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Summary

In this paper, we consider the rank-structured approximation of one important type
of Cauchy matrix. This approximation plays a key role in some structured ma-
trix methods such as stable and efficient direct solvers and other algorithms for
Toeplitz matrices and certain kernel matrices. Previous rank-structured approxima-
tions (specifically hierarchically semiseparable, or HSS, approximations) for such a
matrix of size 𝑛 cost at least𝑂(𝑛) complexity. Here, we show how to construct an HSS
approximation with sublinear (specifically, 𝑂(log3 𝑛)) complexity. The main ideas
include extensive computation reuse and an analytical far-field compression strategy.
Low-rank compression at each hierarchical level is restricted to just a single off-
diagonal block row, and a resulting basis matrix is then reused for other off-diagonal
block rows as well as off-diagonal block columns. The relationships among the off-
diagonal blocks are rigorously analyzed. The far-field compression uses an analytical
proxy point method where we optimize the choice of some parameters so as to ob-
tain accurate low-rank approximations. Both the basis reuse ideas and the resulting
analytical hierarchical compression scheme can be generalized to some other ker-
nel matrices and are useful for accelerating relevant rank-structured approximations
(though not subsequent operations like matrix-vector multiplications).
KEYWORDS:
Cauchy matrix, rank-structured approximation, far-field compression, proxy point method, sublinear com-
plexity, basis reuse

1 INTRODUCTION

Cauchy matrices frequently arise in numerical computations such as solutions of differential and integral equations, solutions of
Toeplitz, Hankel, or Vandermonde systems, kernel matrix methods, and electrostatic potential evaluations. We consider some
Cauchy matrices defined by the evaluation of the following Cauchy kernel function at uniform points 𝑥𝑖, 𝑦𝑗 ∈ ℂ, 𝑖, 𝑗 = 1, 2,… , 𝑛
on a circle or a straight line:

𝜅(𝑥, 𝑦) = 1
𝑥 − 𝑦

. (1)
Specifically, the case with the following points plays an important role in Toeplitz matrix computations:

𝐱 ≡ {𝑥𝑖}𝑖=1∶𝑛 with 𝑥𝑖 = 𝜔2𝑖−2, 𝐲 ≡ {𝑦𝑗}𝑗=1∶𝑛 with 𝑦𝑗 = 𝜔2𝑗−1, (2)
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where 𝜔 = 𝑒
𝜋𝐢
𝑛 , 𝐢 = √

−1, and the Matlab notation 1 ∶ 𝑛 means the natural numbers 1, 2,… , 𝑛. In fact, a Toeplitz matrix in
Fourier space or in conjunction with displacement structures (see, e.g., References9, 14, 16, 22) is related to the Cauchy matrix

𝐶 = 𝜅(𝐱, 𝐲) ≡ (𝜅(𝑥𝑖, 𝑦𝑗))𝑛×𝑛 =
( 1
𝜔2𝑖−2 − 𝜔2𝑗−1

)

𝑛×𝑛
, (3)

where 𝜅(𝐱, 𝐲) or (𝜅(𝑥𝑖, 𝑦𝑗))𝑛×𝑛 denotes the 𝑛 × 𝑛 matrix with the (𝑖, 𝑗) entry 𝜅(𝑥𝑖, 𝑦𝑗).
We are interested in computing a rank-structured approximation to 𝐶 quickly. One motivation is that rank structures can be

used to design efficient and stable direct solvers for general Toeplitz linear systems, as in References6, 20, 23, 27, 33. Such solvers
rely on the efficient low-rank approximations to the off-diagonal blocks of 𝐶 . In particular, hierarchically semiseparable (HSS)
matrices5, 31 have been successfully used to design so-called superfast (nearly linear-complexity) direct Toeplitz solvers with
guaranteed backward stability27, 33. Such methods essentially use HSS approximations of 𝐶 to construct HSS approximations
to Cauchy-like matrices corresponding to Toeplitz matrices in Fourier space. More precisely, for each order-𝑛 Toeplitz matrix
𝑇 , there exist 𝑛 × 2 matrices 𝐺,𝐻 and a diagonal matrix 𝐷 such that9, 14, 16, 22

�̂� = 𝐹𝑛𝑇𝐷𝐹 ∗
𝑛 =

(

𝐺𝑖𝐻∗
𝑗

𝜔2𝑖−2 − 𝜔2𝑗−1

)

𝑛×𝑛

,

where 𝐹𝑛 is the discrete Fourier transform matrix of order 𝑛 and 𝐺𝑖 and 𝐻𝑖 are respectively the 𝑖th rows of 𝐺 and 𝐻 . �̂� may
be approximated by an HSS form so as to produce fast direct Toeplitz solvers. It has been shown in Theorem 4.1 of Reference6
that, once an HSS approximation is computed for 𝐶 so that its off-diagonal blocks are compressed into low-rank forms, low-
rank approximations to the corresponding off-diagonal blocks of �̂� can be conveniently written out. This saves the majority
of the compression cost that is otherwise needed in rank-revealing factorizations or randomized methods previously used in
References6, 20, 27, 33. (That is, the HSS approximation of 𝐶 can serve as a precomputation stage for the HSS approximation of �̂�
and some details may be found in References6, 20, 33.) The approximation to 𝐶 can also be used to accelerate HSS constructions
in other computations related to Toeplitz matrices such as least squares solution27 and eigenvalue solution21, 26, 28.

Another application of the rank-structured approximation to 𝐶 is to quickly find structured approximations to some discretized
matrices like those in Reference24, where implicitly defined kernel matrices related to 𝐶 appear after some transformations
based on certain displacement equations32. The rank-structured approximation method for 𝐶 can also be immediately extended
to some kernel matrices related to point sets with certain geometries like those in References17, 38. In these applications, the
rank-structured approximation to 𝐶 essentially helps convert some other matrix structures into rank structures that are preserved
under multiplications, additions, factorizations, diagonal scalings, etc.

Thus, the quick approximation of 𝐶 by an HSS form is very useful for computations with Toeplitz matrices and some kernel
matrices. The key operation in constructing this HSS form is the low-rank approximation or compression of relevant off-diagonal
blocks. In previous work, the off-diagonal blocks of 𝐶 are compressed by either algebraic rank-revealing factorizations as in
References3, 6, 20 or randomized methods as in References27, 33. The former has a total cost of about 𝑂(𝑛2) flops or more, and the
latter costs about 𝑂(𝑛) flops (with the use of Fast Fourier Transforms). In each case, the compression is done for each individual
off-diagonal block row and column at each hierarchical level, resulting in a total of 𝑂(𝑛) compression steps. (This is also the case
for other hierarchical construction methods like those based on analytical compression or some geometric point heuristics3, 8.)

However, 𝐶 in (3) is highly structured and only depends on 𝑛. It has previously been mentioned in References6, 33 that certain
subblocks of 𝐶 are related. Here, we would like to explore more connections among the off-diagonal blocks of 𝐶 in order to
extensively reuse computations in all compression steps. That is, we intend to reuse compression information across all the
off-diagonal block rows at each hierarchical level of the HSS approximation, and furthermore share information between off-
diagonal block rows and columns. The feasibility of this is justified through our study of the Cauchy structures. Accordingly,
we show that we only need to approximate a single off-diagonal block row at each level, which is sufficient to produce a basis
matrix for all the other off-diagonal block rows and columns at the same level. Consequently, the strategy significantly reduces
the number of compression steps, from 𝑂(𝑛) to 𝑂(log 𝑛).

Moreover, analytical methods can be combined with the algebraic strategy above to further reduce the computational cost.
Analytical approaches have been effectively used in earlier work to quickly construct hierarchical matrix approximations. Exam-
ples related to HSS matrices can be found in References2, 4. Here, we aim to use analytical methods to obtain HSS constructions
with sublinear complexity. Following the terminology in the fast multipole method (FMM)10, we split the off-diagonal com-
pression step into a “near-field part” and a “far-field part”. To avoid expensive rank-revealing factorizations, we approximate the
far-field blocks with an analytical compression strategy called the proxy point method. The method is explicitly given in19, 36, 37
and is also closely related to the Green quadrature approach in Reference1. The general idea is to use some so-called proxy
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points to quickly obtain degenerate function approximations to pairwise interactions based on the interactions’ discretized in-
tegral representations. Such proxy point methods can be used to directly provide a basis matrix without actual compression
operations. Their feasibility for some kernel matrices related to this work has been justified in Reference35. Here, for the Cauchy
case in (3) with the kernel function (1), we provide nearly optimal choices of some parameters in the proxy point approximation.
These choices are nearly optimal in the sense that the resulting low-rank approximation error is as small as possible for a given
numerical rank (or the numerical rank is as small as possible for a given accuracy).

We then give an analytical hierarchical compression scheme to construct an HSS approximation to 𝐶 . The scheme ensures
that the far-field part of an off-diagonal block row at each hierarchical level meets two efficiency requirements. First, it satisfies
a separation condition so that the far-field part is numerically low rank. Second, a near-field subblock has a small row size.
Accordingly, a compact numerical column basis matrix for the off-diagonal block row can be quickly found. Then the basis
reuse idea and the proxy point method are integrated into this scheme to reach sublinear complexity for the HSS construction.
Specifically, we can approximate𝐶 by an HSS form in𝑂(log3 𝑛) flops and with𝑂(log3 𝑛) storage when a prespecified accuracy is
used for off-diagonal compression. This is a significant reduction from the previous roughly 𝑂(𝑛) or 𝑂(𝑛2) counts. An algorithm
is given and the sublinear complexity is confirmed both theoretically and numerically.

The study in this paper provides a convenient algebraic method to take advantage of translation invariance and geometric
symmetry in rank-structured methods. It also hints at useful directions for exploring different intrinsic structures and analytic
properties involved in some other kernel matrices. In addition, our hierarchical structured approximation framework based on
analytical far-field compression is useful for producing rank-structured approximations to kernel matrices evaluated at more
general data sets. This can be used to design either direct solvers or preconditioners for those kernel matrices.

We would like to point out that this work only aims to make the structured approximation stage (in HSS solvers for problems
like Toeplitz systems) highly efficient, and subsequent algorithms like matrix-vector multiplications and linear system solutions
using the constructed HSS form would, of course, still require𝑂(𝑛) complexity and𝑂(𝑛) storage. It is possible to make algorithms
like ULV-type factorizations5, 31 of 𝐶 sublinear complexity as well, which is not considered here. The focus of this work is on
removing the performance bottleneck of the HSS construction phase. This work then helps move the bottleneck elsewhere (e.g.,
to the solution or matrix-vector multiplication phase).

The paper is structured as follows. In Section 2, we detail the application of the proxy point method to the far-field compression
for the off-diagonal blocks of𝐶 . Section 3 reveals some intrinsic structural relationships among the off-diagonal blocks of𝐶 . The
analytical hierarchical compression scheme is then presented in Section 4. The algorithm, its analysis, and some tests are given
in Section 5. Section 6 further discusses the generalization of these ideas. In the presentation, we use 𝐶|𝐬×𝐭 to denote a submatrix
of 𝐶 with row and column index sets 𝐬 and 𝐭, respectively. Also, 𝐶|𝐬 and 𝐶|{∶}×𝐭 mean the submatrices of 𝐶 corresponding to
the rows specified by 𝐬 and columns specified by 𝐭, respectively.

2 ANALYTICAL FAR-FIELD COMPRESSION BY THE PROXY POINT METHOD

In this section, we consider the low-rank approximation of the following subblock of 𝐶:
𝐾 = 𝜅(𝐬, 𝐭) ≡

(

𝜅(𝑥𝑖, 𝑦𝑗)
)

𝑥𝑖∈𝐬,𝑦𝑗∈𝐭
, (4)

where 𝜅 is given in (1), and
𝐬 = {𝜔2(𝑖−1), 1 ≤ 𝑖 ≤ 𝑘} ⊂ 𝐱, 𝐭 = {𝜔2𝑗−1, 𝑘 + 𝑠 < 𝑗 ≤ 𝑛 − 𝑠 − 1} ⊂ 𝐲, (5)

1 ≤ 𝑘 < 𝑛
2
, 1 ≤ 𝑠 < 𝑛 − 𝑘

2
.

Here, 𝑠 is the number of points on each side of 𝐬 that separate 𝐬 from 𝐭. An illustration of the sets 𝐱, 𝐲, 𝐬, 𝐭 is given in Figure 1.
The reason why such sets are considered will become clear later in this section. For convenience, 𝐬 and 𝐭 are sometimes referred
to as the source and target sets, respectively, and 𝐾 is the interaction between 𝐬 and 𝐭.

The two sets 𝐬 and 𝐭 are well separated in the sense that there exists a point 𝑐 ∈ ℂ such that for every 𝑥 ∈ 𝐬 and 𝑦 ∈ 𝐭,
max𝑥∈𝐬 |𝑐 − 𝑥|
min𝑦∈𝐭 |𝑐 − 𝑦|

≤ 𝛿 < 1, (6)
where 𝛿 is a constant often referred to as the separation ratio. The point 𝑐 can be viewed as a center for 𝐬. This concept of
separation is a basic tool in the FMM and also hierarchical matrix methods12. It can be used to show that 𝐾 is numerically low
rank.
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(a) Sets 𝐱, 𝐲 (b) Sets 𝐬, 𝐭, 𝐳

Figure 1 Illustration of the sets under consideration, where each cross (×) is a point in 𝐱, each box (■) is a point in 𝐲, 𝐬 ⊂ 𝐱 is the
source set, 𝐭 ⊂ 𝐲 is the target set, and 𝐳 is a set of proxy points.

We seek to quickly write a (column) basis matrix 𝐺 in a low-rank approximation to 𝐾 . This is an essential component in the
HSS approximation of 𝐶 in Section 4. For this purpose, we use the proxy point method in Reference35 to directly produce 𝐺 as
follows:

𝐾 ≈ 𝐺𝐻𝑇 , with 𝐺 = 𝜅(𝐬, 𝐳), (7)
where 𝐳 is a set of points (called proxy points) located on a contour (called a proxy surface) that separates 𝐬 from 𝐭 in ℂ. See
Figure 1(b) for an illustration. With 𝐺 in (7), 𝐻 is then appropriately decided. (Note that we may also use Taylor expansions
to obtain the low-rank approximation like in the standard FMM. However, there are potential stability issues. Stabilization like
in Reference4 may be applied but it needs careful implementations. Here, the proxy point method followed by quick algebraic
compression can conveniently produce an accurate low-rank approximation.)

The reader is referred to Reference35 for more details. In particular, it is shown in Reference35 that, if 𝐬 is located inside a
circle with radius 𝛾1 and center 𝑐 and 𝐭 is outside a circle with radius 𝛾2 > 𝛾1 and the same center 𝑐, then a nearly optimal choice
of proxy points can be obtained by choosing some quadrature points on a circle with radius 𝛾 =

√

𝛾1𝛾2. With such a choice, the
approximation error satisfies35

‖𝐾 − 𝐺𝐻𝑇
‖𝐹

‖𝐾‖𝐹
≤ 2

( 𝛾2
𝛾1
)𝑟 − 1

= 𝑂
((

𝛾1
𝛾2

)𝑟)

, (8)

where 𝑟 is the number of points in 𝐳. If we take 𝛾1 = max𝑥∈𝐬 |𝑐 − 𝑥| and 𝛾2 = min𝑦∈𝐭 |𝑐 − 𝑦|, then (6) is just 𝛾1
𝛾2
≤ 𝛿, so that

‖𝐾 − 𝐺𝐻𝑇
‖𝐹

‖𝐾‖𝐹
= 𝑂(𝛿𝑟). (9)

Thus, the approximation error of the proxy point method decreases as 𝛾1
𝛾2

get smaller. We then try to minimize 𝛾1
𝛾2

(by moving
the center point 𝑐 in (6)) so as to minimize the error for given 𝑟. To this end, we have the following theorem.
Theorem 1. Consider 𝐬 and 𝐭 as in (5). Let 𝑔 ∶ ℂ → ℝ be the function defined by

𝑔(𝑐) =
𝛾1(𝑐)
𝛾2(𝑐)

, with 𝛾1(𝑐) = max
𝑥∈𝐬

|𝑐 − 𝑥|, 𝛾2(𝑐) = min
𝑦∈𝐭

|𝑐 − 𝑦|.

Then
argmin(𝑔) = 𝜔𝑘−1,

min
𝑐∈ℂ

𝑔(𝑐) = sin
(𝑘 − 1)𝜋

2𝑛

/

sin
(𝑘 + 2(𝑠 + 1))𝜋

2𝑛
< cos

(2𝑠 + 3)𝜋
2𝑛

< 1. (10)

Proof. Since 𝑔(0) = 1 and 𝑔(𝜔𝑘−1) < 1, we have argmin(𝑔) ≠ 0. Use Arg(𝑐) to denote the principal argument of 𝑐 in [0, 2𝜋).
Let the map  ∶ ℂ → [0, 𝑛) be defined by

(𝑐) =
Arg(𝑐)
2𝜋

𝑛, (11)
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which can be thought of as the argument of 𝑐 scaled to the interval [0, 𝑛). Let
Θ1 =

{

𝑐
|

|

|

|

𝑘 − 1
2

≤ (𝑐) < 𝑛
2
, 𝑐 ≠ 0

}

,

Θ2 =
{

𝑐
|

|

|

|

0 ≤ (𝑐) < 𝑘 − 1
2

or 𝑘 − 1 + 𝑛
2
≤ (𝑐) < 𝑛, 𝑐 ≠ 0

}

,

Ω1 =
{

𝑐
|

|

|

|

𝑘 − 1
2

≤ (𝑐) < 𝑘 + 𝑠, 𝑐 ≠ 0
}

,

Ω2 =
{

𝑐
|

|

|

|

0 ≤ (𝑐) < 𝑘 − 1
2

or 𝑛 − 𝑠 − 1 ≤ (𝑐) < 𝑛, 𝑐 ≠ 0
}

.

Figure 2 illustrates these regions. We show

𝛾1(𝑐) =

⎧

⎪

⎨

⎪

⎩

|1 − 𝑐|, 𝑐 ∈ Θ1,
|𝜔2(𝑘−1) − 𝑐|, 𝑐 ∈ Θ2,
|𝜔2𝑘𝑐 − 𝑐|, otherwise,

𝛾2(𝑐) =

⎧

⎪

⎨

⎪

⎩

|𝜔2(𝑘+𝑠)+1 − 𝑐|, 𝑐 ∈ Ω1,
|𝜔2(𝑛−𝑠−1)−1 − 𝑐|, 𝑐 ∈ Ω2,
|𝜔2𝑗𝑐 − 𝑐|, otherwise,

(12)

where 𝑘𝑐 = ⌊(𝑐)− 𝑛
2
⌉ and 𝑗𝑐 = ⌊(𝑐)− 1

2
⌉+ 1

2
(with tie-breaking by rounding up). Let 𝑐 = 𝑟0𝑒𝐢𝜃0 for some 𝑟0 > 0, 𝜃0 ∈ [0, 2𝜋)

and let
𝑓 (𝜙) = |𝑐 − 𝑒𝐢𝜙|2 = (𝑟0 cos(𝜃0) − cos(𝜙))2 + (𝑟0 sin(𝜃0) − sin(𝜙))2 = 𝑟20 + 1 − 2𝑟0 cos(𝜙 − 𝜃0).

In order to determine 𝛾1(𝑐) and 𝛾2(𝑐), we just need to find max 𝑓 (𝜙) and min 𝑓 (𝜙), respectively. Since 𝑓 ′(𝜙) = 2𝑟0 sin(𝜙 − 𝜃0),
𝑓 (𝜙) has extrema when 𝜙 = 𝜃0 + 𝑘𝜋 with an integer 𝑘. Now,

𝑓 (𝜃0 + 𝑘𝜋) =

{

(𝑟0 + 1)2, if 𝑘 is odd,
(𝑟0 − 1)2, otherwise.

Thus, 𝑓 (𝜙) reaches its maximum, at, say 𝜃0 + 𝜋. Note that 𝑓 is increasing when 𝜙 − 𝜃0 ∈ [0, 𝜋] and decreasing when 𝜙 − 𝜃0 ∈
[𝜋, 2𝜋]. Hence, 𝛾1(𝑐) = max𝑥∈𝐬 |𝑐 − 𝑥| occurs at a point 𝑒𝐢𝜙1 ∈ 𝐬 closest to 𝑒𝐢(𝜃0+𝜋). Similarly, 𝑓 (𝜙) reaches its minimum at,
say, 𝜃0, so 𝛾2(𝑐) = min𝑦∈𝐭 |𝑐 − 𝑦| occurs at a point 𝑒𝐢𝜙2 ∈ 𝐭 closest to 𝑒𝐢𝜃0 . Then, the results in (12) follow immediately for 𝑐 in
different regions.

Re

Θ2

Re

(a) Regions of definition for 𝛾1 (b) Regions of definition for 𝛾2
Figure 2 Illustration of the regions of definition for the piecewise-defined functions 𝛾1 and 𝛾2, along with points in the sets 𝐬 (×)
and 𝐭 (■). On Θ1 and Θ2, 𝛾1(𝑐) returns the distance between the input 𝑐 and the red and blue crosses, respectively. On Ω1 and
Ω2, 𝛾2(𝑐) returns the distance between 𝑐 and the red and blue squares, respectively.

Next, we show 𝑔(𝑐) ≥ 1 for any 𝑐 ∈ ℂ ⧵
{

Ω1 ∪ Ω2 ∪ {0}
}. Again, write 𝑐 = 𝑟0𝑒𝐢𝜃0 with 𝜃0 ∈ [0, 2𝜋). With the optimal points

𝑒𝐢𝜙1 and 𝑒𝐢𝜙2 obtained as above, if we suppose 𝜙1, 𝜙2 ∈ [0, 2𝜋), then 2𝜋
𝑛

≤ |𝜙1 − 𝜃0| ≤ (𝑛 − 1) 2𝜋
𝑛
, |𝜙2 − 𝜃0| ≤

2𝜋
𝑛

. This yields
cos(𝜙1 − 𝜃0) ≤ cos(𝜙2 − 𝜃0) and then

𝑔2(𝑐) =
𝑓 (𝜙1)
𝑓 (𝜙2)

=
𝑟20 + 1 − 2𝑟0 cos(𝜙1 − 𝜃0)

𝑟20 + 1 − 2𝑟0 cos(𝜙2 − 𝜃0)
≥ 1.
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Thus,
argmin(𝑔) ∈ Ω1 ∪ Ω2.

Let 𝑐0 ∈ Ω1. If we write 𝑐0 = 𝜌𝜔𝑘−1𝑒𝐢𝜃 for some 𝜌, 𝜃 ∈ ℝ with 𝜌 > 0, we have 𝑐0 = 𝜌𝜔𝑘−1𝑒−𝐢𝜃 ∈ Ω2∪
{

𝑐 | (𝑐) = 𝑘−1
2
, 𝑐 ≠ 0

}

.
Then 𝛾1(𝑐0) = |𝜔2(𝑘−1) − 𝜌𝜔𝑘−1𝑒−𝐢𝜃| = |1 − 𝜌𝜔−(𝑘−1)𝑒−𝐢𝜃| = |1 − 𝑐0| = |1 − 𝑐0| = 𝛾1(𝑐0). Similarly, we have 𝛾2(𝑐0) = 𝛾2(𝑐0).
Accordingly,

𝑔(𝑐0) = 𝑔(𝑐0).
(See Figure 3(a).) Hence,

min
𝑐∈Ω1∪Ω2

𝑔(𝑐) = min
𝑐∈Ω1

𝑔(𝑐).

Re

Im
c0

c̃0

Re

Im

⋄

c0

ĉ0

(a) 𝑐0 and 𝑐0 (b) 𝑐0 and 𝑐0

Figure 3 Illustration of the points 𝑐0 = 𝜌𝜔𝑘−1𝑒𝐢𝜃 , 𝑐0 = 𝜌𝜔𝑘−1𝑒−𝐢𝜃 , and 𝑐0 = 𝜌𝜔𝑘−1, along with points in the sets 𝐬 (×) and 𝐭 (■),
where the dotted black line illustrates the relevant symmetry. In (a), 𝑔 (𝑐0

) is the length of the solid blue line divided by the
length of the solid red line and 𝑔

(

𝑐0
) is the length of the dashed blue line divided by the length of the dashed red line. In (b),

𝑔
(

𝑐0
) is the length of the dashed blue line divided by the length of the dashed red line.

Then, let 𝑐0 = 𝜌𝜔𝑘−1 (that satisfies (𝑐0) = 𝑘−1
2

). The law of cosines applied to two triangles formed by the origin, the
point 1, and either 𝑐0 or 𝑐0 immediately leads to 𝛾1(𝑐0) ≥ 𝛾1(𝑐0). Similarly, 𝛾2(𝑐0) ≤ 𝛾2(𝑐0) holds. Thus, we have 𝑔(𝑐0) ≥ 𝑔(𝑐0).
Accordingly,

argmin(𝑔) ∈
{

𝑐
|

|

|

|

(𝑐) = 𝑘 − 1
2

, 𝑐 ≠ 0
}

.

Then from (12), the positive minima of 𝑔 occur at the positive minima of the following function:
ℎ(𝜌) =

|

|

1 − 𝜌𝜔𝑘−1
|

|

|

|

𝜔2(𝑘+𝑠)+1 − 𝜌𝜔𝑘−1|
|

=
|1 − 𝜌𝑒𝛽𝐢|
|𝑒𝛼𝐢 − 𝜌𝑒𝛽𝐢|

,

where 𝛼 = 2𝜋(𝑘+𝑠)+𝜋
𝑛

and 𝛽 = 𝜋(𝑘−1)
𝑛

. We look at

ℎ2(𝜌) =
(𝜌 sin 𝛽)2 + (1 − 𝜌 cos 𝛽)2

(sin 𝛼 − 𝜌 sin 𝛽)2 + (cos 𝛼 − 𝜌 cos 𝛽)2
.

Since the denominator above does not vanish, by the quotient rule, the positive minima of ℎ2(𝜌) occur at the positive zeros of
the function

ℎ̃(𝜌) = 2(𝜌2 − 1) (cos 𝛽 − cos (𝛼 − 𝛽)) .
The only such zero is at 𝜌 = 1, so this is the only positive minimum argument of ℎ2(𝜌). Thus, argmin(𝑔) = 𝑒

𝜋(𝑘−1)𝐢
𝑛 = 𝜔𝑘−1. With

the choice of the center 𝑐 = 𝜔𝑘−1, we have
𝛾1 =

|

|

|

1 − 𝜔𝑘−1|
|

|

=
√

2(1 − cos 𝛽) = 2 sin
(𝑘 − 1)𝜋

2𝑛
,

𝛾2 =
|

|

|

𝜔2(𝑘+𝑠)+1 − 𝜔𝑘−1|
|

|

=
√

2(1 − cos(𝛼 − 𝛽) = 2 sin
(𝑘 + 2(𝑠 + 1))𝜋

2𝑛
.

Then min𝑐∈ℂ 𝑔(𝑐) in (10) is obtained.
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Finally, by the definition of the sets 𝐬 and 𝐭, we have 𝑘 < 𝑛
2

and 𝑠 + 1 ≤ 𝑛−𝑘
2

. Then
(𝑘 − 1)𝜋

2𝑛
∈
[

0, 𝜋
4

)

,
(𝑘 + 2(𝑠 + 1))𝜋

2𝑛
∈
(

0, 𝜋
2

)

.

Also, note that (𝑘+2(𝑠+1))𝜋
2𝑛

− (𝑘−1)𝜋
2𝑛

= (2𝑠+3)𝜋
2𝑛

∈ (0, 𝜋
2
). Then

sin
(𝑘 − 1)𝜋

2𝑛
= sin

(𝑘 + 2(𝑠 + 1) − (2𝑠 + 3))𝜋
2𝑛

< sin
(𝑘 + 2(𝑠 + 1))𝜋

2𝑛
cos

(2𝑠 + 3)𝜋
2𝑛

.

This yields the inequality in (10).
This theorem shows how to choose the optimal center 𝑐 in (6) so as to make the error in (8) as small as possible. The optimal

choice is actually the “center" of the source subset 𝐬 in terms of the scaled argument. Later for convenience, we sometimes refer
to this center as an argument center. With the optimal center, we can ensure that 𝐬 and 𝐭 in (5) are well separated so as to obtain
𝛿 in (6) as a constant smaller than 1 and independent of 𝑛. More specifically, we have the following result.
Corollary 1. For 𝐬 and 𝐭 in (5), suppose 𝑠 = 𝑘

2
= 𝑜(𝑛). With the optimal 𝑐 in Theorem 1, we have

max𝑥∈𝐬 |𝑐 − 𝑥|
min𝑦∈𝐭 |𝑐 − 𝑦|

∼ 1
2

as 𝑛 → ∞. (13)

Proof. This is true since
sin

(𝑘 − 1)𝜋
2𝑛

/

sin
(𝑘 + 2(𝑠 + 1))𝜋

2𝑛
∼ 𝑘

𝑘 + 2𝑠
.

Note that the result can be made more general. For convenience, we introduce the following definition.
Definition 1. For subsets 𝐬 ⊂ 𝐱 and 𝐭 ⊂ 𝐲, with the notation in (11), the argument span of 𝐬 and the argument gap between 𝐬
and 𝐭 are, respectively,

span(𝐬) = max
𝑥1,𝑥2∈𝐬

(|
|

(𝑥1) −(𝑥2)||mod 𝑛),

gap(𝐬, 𝐭) = min
𝑥∈𝐬,𝑦∈𝐭

(|(𝑥) −(𝑦)|mod 𝑛).

In this definition, span(𝐬) and gap(𝐬, 𝐭) are given in terms of the scaled argument. For example, for 𝐬 and 𝐭 in (5),
span(𝐬) = 𝑘, gap(𝐬, 𝐭) > 𝑠.

Thus, 𝑠 controls the argument gap between 𝐬 and 𝐭. In general, for subsets 𝐬 ⊂ 𝐱 and 𝐭 ⊂ 𝐲, as long as
gap(𝐬, 𝐭) ≥

1
2
span(𝐬), (14)

then the separation ratio between 𝐬 and 𝐭 is 1
2

or smaller with center 𝑐 chosen as above. (With some technicalities, a precise
statement can be made and is skipped here.) This will be useful in Section 4 when the points are sparsified.

This discussion indicates that, as long as gap(𝐬, 𝐭) is large enough in comparison with span(𝐬), 𝐬 and 𝐭 would be well
separated. Then the interaction matrix between 𝐬 and 𝐭 is numerically low rank. Accordingly, with the proxy point method, we
can use 𝑟 = 𝑂(| log 𝜏|) proxy points to make the error in (9) bounded by any accuracy 𝜏. In fact, for 𝐬 and 𝐭 in (5), following
the study in Reference35, we can select proxy points that are actually uniform quadrature points used in the trapezoidal rule and
located on a circle with radius 𝛾 , and 𝛾 is another parameter with a nearly optimal value √

𝛾1𝛾2. Thus, we choose

𝛾 = 2
√

sin
(𝑘 − 1)𝜋

2𝑛
sin

(𝑘 + 2(𝑠 + 1))𝜋
2𝑛

.

3 RELATIONSHIPS AMONG OFF-DIAGONAL BLOCKS OF 𝐶

Another key idea in our sublinear complexity rank-structured approximation of 𝐶 is to fully explore the relationships among the
off-diagonal blocks of 𝐶 . For the sake of convenience, we suppose 𝑛 is a power of 2, so that 𝐶 can be hierarchically partitioned
up to 𝐿 = 𝑂(log2 𝑛) times with uniform block sizes at each level. That is, at level 𝑙 = 0, 1,… , 𝐿, 𝐶 is partitioned evenly into
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2𝑙 block rows, each with row size 𝑛
2𝑙

. 𝐶 is also partitioned into block columns in a similar way. The hierarchical partitioning
produces a binary tree 𝑇 that helps organize the approximation process. We explore the relationships among the off-diagonal
block rows and columns at each hierarchical level 𝑙 so as to save low-rank compression cost in the rank-structured approximation.

Let a node 𝑖 of 𝑇 correspond to the 𝑘th block row at that level. That is, 𝑖 corresponds to the subblock of 𝐶 with index set
𝐈𝑖 =

{

(𝑘 − 1) 𝑛
2𝑙

+ 1, (𝑘 − 1) 𝑛
2𝑙

+ 2,… , 𝑘 𝑛
2𝑙
}

. (15)
Following the notation in Reference29, the HSS block row and column corresponding to node 𝑖 are, respectively,

𝐶−
𝑖 = 𝐶|𝐈𝑖×(𝐍∖𝐈𝑖), 𝐶 |

𝑖 = 𝐶|(𝐍∖𝐈𝑖)×𝐈𝑖 (16)
where 𝐍 = {1 ∶ 𝑛}. Suppose 𝑗 is the node at level 𝑙 of 𝑇 that corresponds to the (𝑘 + 1)st block row at that level and has row
index set

𝐈𝑗 =
{

𝑘 𝑛
2𝑙

+ 1, 𝑘 𝑛
2𝑙

+ 2,… , (𝑘 + 1) 𝑛
2𝑙
}

. (17)
Denote the HSS block row corresponding to node 𝑗 by 𝐶−

𝑗 . In Reference6, it is pointed out that the subblock 𝐶|𝐈𝑖×𝐈𝑗 of 𝐶−
𝑖 and

the subblock 𝐶|𝐈𝑗×((𝑘+1)
𝑛
2𝑙
+1∶(𝑘+2) 𝑛

2𝑙
) of 𝐶−

𝑗 differ by just the constant scalar 𝜔− 𝑛
2𝑙 . This follows directly from the explicit definition

of 𝐶 . Thus, if a low-rank approximation is obtained for 𝐶|𝐈𝑖×𝐈𝑗 , it can be reused for 𝐶|𝐈𝑗×((𝑘+1)
𝑛
2𝑙
+1∶(𝑘+2) 𝑛

2𝑙
).

Here, we would like to systematically generalize such a strategy and also give an intuitive justification. We first look at the
block rows at the same level and then the block columns. The following lemma directly follows from the structure of 𝐶 and
provides a convenient tool to study the relationships among the HSS blocks of 𝐶 .
Lemma 1. Let 1 and 2 be circulant matrices with the first row

(

1
1−𝜔

1
1−𝜔3 ⋯ 1

1−𝜔2𝑛−1

)

,
(

1
1−𝜔

1
𝜔2𝑛−2−𝜔

⋯ 1
𝜔2−𝜔

)

,

respectively. Then
𝐶 = Λ1 = 2Λ,

where Λ = diag(1, 𝜔−2,… , 𝜔−2(𝑛−1)).
The relationship among the HSS block rows/columns at each level can be shown as follows.

Proposition 1. Let 𝑖 and 𝑗 be any two nodes at the same level of 𝑇 corresponding to HSS block rows 𝐶−
𝑖 and 𝐶−

𝑗 , respectively.
Then there exist a nonzero scalar 𝜇 and a permutation matrix 𝑃 such that

𝐶−
𝑖 = 𝜇𝐶−

𝑗 𝑃 , 𝐶 |

𝑖 = 𝜇𝑃 𝑇𝐶 |

𝑗 . (18)
Proof. For the first equality in (18), it suffices to show the result for the two nearby HSS blocks 𝐶−

𝑖 and 𝐶−
𝑗 corresponding to

the row index sets 𝐈𝑖 in (15) and 𝐈𝑗 in (17), respectively. Once this is shown, the result can then be immediately extended to all
the HSS blocks at the same level 𝑙. Following the notation in (15) and (17), we may consider the sets

𝐍∖𝐈𝑖 = 𝐉𝑖,1 ∪ 𝐉𝑖,2 ∪ 𝐉𝑖,3, 𝐍∖𝐈𝑗 = 𝐉𝑗,1 ∪ 𝐉𝑗,2 ∪ 𝐉𝑗,3,

where
𝐉𝑖,1 =

{

1 ∶ (𝑘 − 1) 𝑛
2𝑙
}

, 𝐉𝑖,2 =
{

𝑘 𝑛
2𝑙

+ 1 ∶ 𝑛 − 𝑛
2𝑙
}

, 𝐉𝑖,3 =
{

𝑛 − 𝑛
2𝑙

+ 1 ∶ 𝑛
}

,

𝐉𝑗,1 =
{

1 ∶ 𝑛
2𝑙
}

, 𝐉𝑗,2 =
{ 𝑛
2𝑙

+ 1 ∶ 𝑘 𝑛
2𝑙
}

, 𝐉𝑗,3 =
{

𝑘 𝑛
2𝑙

+ 1 ∶ 𝑛
}

.

The partitions are illustrated in Figure 4. According to Lemma 1,
𝐶−
𝑖 =

(

𝐶|𝐈𝑖×𝐉𝑖,1 𝐶|𝐈𝑖×𝐉𝑖,2 𝐶|𝐈𝑖×𝐉𝑖,3

)

= Λ|𝐈𝑖×𝐈𝑖
(

1|𝐈𝑖×𝐉𝑖,1 1|𝐈𝑖×𝐉𝑖,2 1|𝐈𝑖×𝐉𝑖,3

)

, (19)
𝐶−
𝑗 =

(

𝐶|𝐈𝑗×𝐉𝑗,1 𝐶|𝐈𝑗×𝐉𝑗,2 𝐶|𝐈𝑗×𝐉𝑗,3

)

= Λ|𝐈𝑗×𝐈𝑗
(

1|𝐈𝑗×𝐉𝑗,1 1|𝐈𝑗×𝐉𝑗,2 1|𝐈𝑗×𝐉𝑗,3

)

. (20)

Since Λ|𝐈𝑖×𝐈𝑖 = diag(𝜔−2(𝑘−1) 𝑛
2𝑙 ,… , 𝜔−2(𝑘 𝑛

2𝑙
−1)), Λ|𝐈𝑗×𝐈𝑗 = diag(𝜔−2𝑘 𝑛

2𝑙 ,… , 𝜔−2((𝑘+1) 𝑛
2𝑙
−1)), we have Λ|𝐈𝑖×𝐈𝑖 = 𝜇Λ|𝐈𝑗×𝐈𝑗 with

𝜇 = 𝜔
𝑛

2𝑙−1 . Also, the circulant structure of 1 means
1|𝐈𝑖×𝐉𝑖,1 = 1|𝐈𝑗×𝐉𝑗,2 , 1|𝐈𝑖×𝐉𝑖,2 = 1|𝐈𝑗×𝐉𝑗,3 , 1|𝐈𝑖×𝐉𝑖,3 = 1|𝐈𝑗×𝐉𝑗,1 .
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C|Ii×Ji,2 C|Ii×Ji,3

C|Ij×Jj,1 C|Ij×Jj,3

C
−

i

C
−

j

C|Ii×Ji,1

C|Ij×Jj,2

Figure 4 Partitioning of 𝐶−
𝑖 and 𝐶−

𝑗 .

This is because of the same shift amount in both the row and the column indices. For example, for the first equality above, the
shifts from 𝐈𝑖 to 𝐈𝑗 and from 𝐈𝑖,1 to 𝐈𝑗,2 are both 𝑛

2𝑙
. Thus,

(

1|𝐈𝑖×𝐉𝑖,1 1|𝐈𝑖×𝐉𝑖,2 1|𝐈𝑖×𝐉𝑖,3

)

=
(

1|𝐈𝑗×𝐉𝑗,2 1|𝐈𝑗×𝐉𝑗,3 1|𝐈𝑗×𝐉𝑗,1

)

=
(

1|𝐈𝑗×𝐉𝑗,1 1|𝐈𝑗×𝐉𝑗,2 1|𝐈𝑗×𝐉𝑗,3

)

𝑃 ,

where 𝑃 is the permutation matrix that brings 1|𝐈𝑗×𝐉𝑗,1 from the beginning to the end of the first matrix on the far right-hand
side above. (19)–(20) then lead to

𝐶−
𝑖 = 𝜇1Λ|𝐈𝑗×𝐈𝑗

(

1|𝐈𝑗×𝐉𝑗,1 1|𝐈𝑗×𝐉𝑗,2 1|𝐈𝑗×𝐉𝑗,3

)

𝑃 = 𝜇1𝐶
−
𝑗 𝑃 .

Next, for the second equality in (18), we may consider the HSS block rows of 𝐶𝑇 . According to Lemma 1, 𝐶𝑇 = Λ𝑇
2 . Since

𝑇
2 is still a circulant matrix and it is scaled on the left by the same diagonal matrix Λ, the result can then be shown in the same

way as above to get the same 𝜇 and 𝑃 .
This proposition shows that the HSS block rows (columns) are related by scalar multiples and column (row) permutations.

Moreover, we can further relate the HSS block rows to the HSS block columns due to the following proposition.
Proposition 2. Let 𝑖 be any node at level 𝑙 of 𝑇 corresponding to the HSS block row 𝐶−

𝑖 and HSS block column 𝐶 |

𝑖 as in (16).
Let 𝑚 be the row size of 𝐶 |

𝑖 . Then there exists a permutation matrix 𝑃 such that
(𝑃 𝑇𝐶 |

𝑖 )|{2∶𝑚} = − 1
𝜔
(

(𝐶−
𝑖 𝑃 )|{∶}×{1∶𝑚−1}

)𝑇 .

Proof. Let 𝑖1 be the leftmost node at the same level 𝑙 as 𝑖. According to Proposition 1, there exist a scalar 𝜇 and a permutation
matrix 𝑃 such that

𝐶−
𝑖1
= 𝜇𝐶−

𝑖 𝑃 , 𝐶 |

𝑖1
= 𝜇𝑃 𝑇𝐶 |

𝑖 . (21)
Now for 1 ≤ 𝑗 < 𝑘 ≤ 𝑛, since

𝐶𝑘,𝑗 =
1

𝜔2𝑘−2 − 𝜔2𝑗−1
= − 1

𝜔
1

𝜔2𝑗−2 − 𝜔2𝑘−3
= − 1

𝜔
𝐶𝑗,𝑘−1,

we have
𝐶 |

𝑖1
|{2∶𝑚} = − 1

𝜔
(𝐶−

𝑖1
|{∶}×{1∶𝑚−1})𝑇 . (22)

(See Figure 5 for an illustration.) Then (21) and (22) together yield the result.
The implication of Proposition 1 is that, once we obtain a low-rank approximation to one HSS block row (or column) at level

𝑙, we can reuse its column (row) basis matrix for all the other HSS block rows (or columns) at level 𝑙. Proposition 2 further
means that the HSS block column 𝐶 |

𝑖 and row 𝐶−
𝑖 are also closely related. With the exception of one row in 𝐶 |

𝑖 and one column
in 𝐶−

𝑖 , the remaining subblocks can also share basis information. In the next section, we will take advantage of these relations
to design our sublinear complexity HSS approximation for 𝐶 .

4 ANALYTICAL HIERARCHICAL COMPRESSION SCHEME WITH SUBLINEAR
COMPLEXITY

In this section, we showcase our sublinear complexity HSS approximation of 𝐶 through a combination of multiple techniques.
Again, we assume the method of partitioning in the beginning of Section 3. The binary tree 𝑇 produced in the hierarchical
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(C−

i1
)|{:}×{m}(C−

i1
)|{:}×{1:m−1}

(C
|
i1
)|{1}

(C
|
i1
)|{2:m}

= −

1

ω
((C−

i1
)|{:}×{1:m−1})

T

Figure 5 The relationship between 𝐶 |

𝑖1
|{2∶𝑚} and 𝐶−

𝑖1
|{∶}×{1∶𝑚−1}, when 𝑖1 is the leftmost node at level 𝑙 of 𝑇 .

partitioning of 𝐶 can essentially serve as a tree (called HSS tree) for representing the resulting HSS approximation, which is
recursively defined by5, 31

𝐷𝑘 =
(

𝐷𝑖 𝑈𝑖𝐵𝑖𝑉 𝑇
𝑗

𝑈𝑗𝐵𝑗𝑉 𝑇
𝑖 𝐷𝑗

)

,

where 𝑘 is a node in 𝑇 with children 𝑖 and 𝑗, and 𝑈𝑖, 𝑈𝑗 , 𝑉𝑖, 𝑉𝑗 are off-diagonal basis matrices. These last matrices are also
defined recursively by

𝑈𝑘 =
(

𝑈𝑖𝑅𝑖
𝑈𝑗𝑅𝑗

)

, 𝑉𝑘 =
(

𝑉𝑖𝑊𝑖
𝑉𝑗𝑊𝑗

)

.

Only the leaf-level 𝐷, 𝑈 , and 𝑉 matrices are stored, along with the 𝑅 and 𝑊 matrices of every level except the root level.
If 𝑘 is the root of 𝑇 , then 𝐷𝑘 is just the entire HSS matrix. This gives a generator representation of the HSS form, where the
𝐷,𝑈, 𝑉 ,𝑅,𝑊 matrices are said to be the HSS generators. Each block row or column without the diagonal block is an HSS
block as in (16).

During the construction of the HSS approximation for 𝐶 , each HSS block row and column are compressed so as to find the
generators. In all existing HSS approximation methods, the HSS blocks are compressed individually, leading to the complexity
of at least 𝑂(𝑛). In the following subsections, we show how to construct an HSS approximation to 𝐶 in sublinear complexity.
The main ingredients include the following.

• Extract a row basis matrix for only one HSS block row at each hierarchical level 𝑙 via the proxy point compression for its
far-field subblock.

• Ensure a near-field subblock of that HSS block row has small row size regardless of the level 𝑙.
• Share the row basis matrix across the HSS block rows at the entire level and also extend to the HSS block columns.

We recall our assumption on 𝑛 that allows us to partition 𝐶 hierarchically with 𝐿 levels of block rows, so that the associated
HSS tree 𝑇 is a perfect binary tree. Also, corresponding to a leaf node 𝑖 ∈ 𝑇 , each HSS block row 𝐶−

𝑖 = 𝜅(𝐱𝑖, 𝐲𝑖) is the
interaction between subsets 𝐱𝑖 ⊂ 𝐱 and 𝐲𝑖 ⊂ 𝐲 of sizes 𝑛

2𝐿
and 𝑛 − 𝑛

2𝐿
, respectively. For example, if 𝑖 = 1 which corresponds to

the topmost HSS block row at the leaf level, we have 𝐱𝑖 = {𝜔2𝑘−2
| 1 ≤ 𝑘 ≤ 𝑛

2𝐿
} and 𝐲𝑖 = {𝜔2𝑘−1

|

𝑛
2𝐿

+ 1 ≤ 𝑘 ≤ 𝑛}.

4.1 Compression at the leaf level
For a node 𝑖 at the leaf level or level 𝐿, first consider the case where 𝑖 corresponds to the topmost HSS block row, i.e., 𝑖 = 1.
Partition 𝐱𝑖 into

𝐱𝑖 = 𝐬𝑖 ∪ �̄�𝑖 with (23)
𝐬𝑖 =

{

𝜔2𝑘−2
|

𝑛
2𝐿+2

≤ 𝑘 < 3𝑛
2𝐿+2

}

, �̄�𝑖 = 𝐱𝑖 ⧵ 𝐬𝑖.
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Since we are considering the interaction between 𝐱𝑖 and 𝐲𝑖, we may consider 𝐬𝑖 as the “far-field" subset of 𝐱𝑖 and �̄�𝑖 the “near-
field" subset of 𝐱𝑖. (The reason why we split the source set 𝐱𝑖 instead of the target set 𝐲𝑖 will be explained later in Remark 1.)
See Figure 6(a) for an illustration and see Figure 7 for the partitioning of the corresponding HSS block 𝐶−

𝑖 . Since it is the leaf
level, the sizes of both 𝐬𝑖 and �̄�𝑖 are 𝑛

2𝐿+1
and are typically set to be small multiples of a desired numerical rank 𝑟.

si

s̄i

s̄i

yi

s̃i

s̄i

s̄i

yi

(a) Set 𝐬𝑖 for a leaf 𝑖 (b) After sparsification (c) ⋃𝑖∶leaf �̂�𝑖

Figure 6 Illustration of the sets under consideration, the sparsification of 𝐬𝑖 into �̃�𝑖 for a leaf 𝑖, and the resulting source point
subsets of 𝐱 after one level of sparsification.

xi

xi
yi

si

Figure 7 Partitioning of the HSS block 𝐶−
𝑖 corresponding to Figure 6(a).

Note that the partitioning in (23) essentially makes span(𝐬𝑖) to be at most half of span(𝐱𝑖). �̄�𝑖 has two pieces, each has
argument span about 1∕4 of span(𝐱𝑖). It can be verified that, if we set 𝐬 = 𝐬𝑖 and 𝐭 = 𝐲𝑖 in Definition 1, then (14) holds
and 𝐬 and 𝐭 are well separated. Thus, the analytical compression strategy in Section 2 is applicable to the far-field interaction
𝐶−
𝑖,2 ≡ 𝜅(𝐬𝑖, 𝐲𝑖). For convenience, let 𝑃 (𝐿) be a row permutation matrix such that

𝐶−
𝑖 = 𝑃 (𝐿)

(

𝐶−
𝑖,1

𝐶−
𝑖,2

)

≡
(

𝜅(�̄�𝑖, 𝐲𝑖)
𝜅(𝐬𝑖, 𝐲𝑖)

)

.

To apply the proxy point method in Section 2, we follow the choice of the optimal center in Theorem 1. As discussed after
Theorem 1, the optimal center 𝑐 is the argument center of the source subset 𝐬𝑖, which is also the argument center of 𝐱𝑖:

𝑐 = 𝜔
𝑛
2𝐿

−1.

Following the proof of Theorem 1, we can then choose a set 𝐳𝑖 of 𝑟 =  (| log 𝜏|) proxy points on the circle with center 𝑐 and
radius

𝛾 =
√

|1 − 𝑐| ⋅ |𝜔
𝑛

2𝐿+1 − 𝑐|.
The proxy point method then yields the following approximation with relative accuracy 𝜏 (see (7)):

𝐶−
𝑖,2 ≈ 𝐺𝑖𝐻

𝑇
𝑖 , with 𝐺𝑖 = 𝜅(𝐬𝑖, 𝐳𝑖). (24)

Now, apply a rank-revealing factorization to 𝐺𝑖 to get a row permutation matrix Π(𝐿), which leads to a factorization of the form
𝐺𝑖 ≈ Π(𝐿)

(

𝐼
𝐸(𝐿)

)

𝐺𝑖|�̃�𝑖 , (25)

where 𝐺𝑖|�̃�𝑖 consists of 𝑟 selected rows of 𝐺𝑖 corresponding to a row index set �̃�𝑖. Strong rank-revealing factorizations like the
one in Reference11 may be used so that 𝐸(𝐿) has entries satisfying certain bounds to ensure the reliability. (In practice, simpler
variations like row pivoted QR factorizations often work reasonably well and have better efficiency.) The factorization (25) is
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also called an interpolative decomposition18 or structure preserving rank-revealing (SPRR) factorization33. As mentioned in
Reference33, this results in the approximation

𝐶−
𝑖,2(= 𝜅(𝐬𝑖, 𝐲𝑖)) ≈ Π(𝐿)

(

𝐼
𝐸(𝐿)

)

𝐺𝑖|�̃�𝑖𝐻
𝑇
𝑖 ≈ Π(𝐿)

(

𝐼
𝐸(𝐿)

)

𝐶−
𝑖,2|�̃�𝑖 . (26)

Thus, 𝐶−
𝑖,2|�̃�𝑖 serves as an approximate row basis matrix for 𝐶−

𝑖,2. The procedure of using the proxy point method and the SPRR
factorization to get (24)–(26) is also called a hybrid compression in Reference35. We pause to note that we have 𝐶−

𝑖,2|�̃�𝑖 =
𝜅(�̃�𝑖, 𝐭𝑖) for a subset �̃�𝑖 of 𝐬𝑖. That is, (26) sparsifies 𝐬𝑖 into �̃�𝑖. In such circumstances, �̃�𝑖 is sometimes called a skeleton7, 15, 25 or
representative set30.

Accordingly, we have
𝐶−
𝑖 ≈ 𝑃 (𝐿)

⎛

⎜

⎜

⎝

𝐼

Π(𝐿)
(

𝐼
𝐸(𝐿)

)

⎞

⎟

⎟

⎠

(

𝐶−
𝑖,1

𝐶−
𝑖,2|�̃�𝑖

)

. (27)

(Here, we abuse notation and use 𝐼 to denote identity matrices of different sizes.) For convenience, let �̄�𝑖 be the row index of
𝐶−
𝑖,1 in 𝐶−

𝑖 and let �̂�(𝐿) = �̄�𝑖 ∪ �̃�𝑖. Then we may rewrite (27) as

𝐶−
𝑖 ≈ 𝑈 (𝐿)𝐶−

𝑖 |�̂�(𝐿) with 𝑈 (𝐿) = 𝑃 (𝐿)
(

𝐼
�̂�(𝐿)

)

, (28)

where 𝑃 (𝐿) = 𝑃 (𝐿)
(

𝐼
Π(𝐿)

)

is a permutation matrix, �̂�(𝐿) =
(

0 𝐸(𝐿) ), and the identity block in 𝑃 (𝐿) and the zero block in
�̂�(𝐿) both have column sizes equal to |�̄�|.

(28) essentially means that the entire 𝐱𝑖 set is then sparsified to
�̂�𝑖 ≡ �̄�𝑖 ∪ �̃�𝑖, (29)

which corresponds to a row index set �̂�(𝐿) for 𝐶−
𝑖 . This is illustrated in Figure 6(b). (28) may then also be written as

𝐶−
𝑖 (= 𝜅(𝐱𝑖, 𝐲𝑖)) ≈ 𝑈 (𝐿)𝜅(�̂�𝑖, 𝐲𝑖)(= 𝑈 (𝐿)𝐶−

𝑖 |�̂�(𝐿)). (30)
Note that

|𝐬𝑖| = |�̄�𝑖| =
𝑛

2𝐿+1
, |�̂�𝑖| =

𝑛
2𝐿+1

+ 𝑟. (31)
At this point, we set the HSS generator 𝑈𝑖 = 𝑈 (𝐿). If 𝑖 is any other node at the leaf level not corresponding to the topmost

HSS block row, we note that by Proposition 1, all of the displays in the previous case are still valid and the same matrix 𝑈 (𝐿)

can serve as a row basis matrix. Hence, we may still set the HSS generator
𝑈𝑖 = 𝑈 (𝐿).

(Note that our notation Π(𝐿), 𝑈 (𝐿), �̂�(𝐿), and �̂�(𝐿) above is therefore justified.) Also, when 𝐬𝑖 for each leaf 𝑖 is sparsified, the entire
set 𝐱 gets sparsified accordingly, as illustrated in Figure 6(c).

4.2 Compression at nonleaf levels
For a node 𝑖 at a nonleaf level 𝑙 < 𝐿, by induction, we may assume that we have computed 𝑈 (𝑙+1). Let 𝑎1 and 𝑎2 be the children
of 𝑖.

First, suppose that 𝑖 corresponds to the topmost HSS block row at level 𝑙. With 𝑖 in (30) set to be 𝑎1 and 𝑎2, respectively, we
have that 𝐶−

𝑎1
≈ 𝑈 (𝑙+1)𝜅(�̂�𝑎1 , 𝐲𝑎1) and 𝐶−

𝑎2
≈ 𝑈 (𝑙+1)𝜅(�̂�𝑎2 , 𝐲𝑎2). Then

𝐶−
𝑖 (= 𝜅(𝐱𝑖, 𝐲𝑖)) ≈

(

𝑈 (𝑙+1)

𝑈 (𝑙+1)

)(

𝜅(�̂�𝑎1 , 𝐲𝑖)
𝜅(�̂�𝑎2 , 𝐲𝑖)

)

≡
(

𝑈 (𝑙+1)

𝑈 (𝑙+1)

)

𝜅(𝐱𝑖, 𝐲𝑖), (32)
where 𝐱𝑖 = �̂�𝑎1 ∪ �̂�𝑎2 . See Figure 8(a). Following the HSS construction procedure in Reference31, the compression of 𝐶−

𝑖 can then
be done on 𝜅(𝐱𝑖, 𝐲𝑖), which corresponds to the rows of 𝐶−

𝑖 with index set �̂�(𝑙+1) ∪ (�̂�(𝑙+1)+ 𝑛
2𝑙+1

). Similarly to before, partition 𝐱𝑖 as
𝐱𝑖 = 𝐬𝑖 ∪ �̄�𝑖 with

𝐬𝑖 = 𝐱𝑖 ∩
{

𝜔2𝑘−2
|

𝑛
2𝑙+2

≤ 𝑘 < 3𝑛
2𝑙+2

}

, �̄�𝑖 = 𝐱𝑖 ⧵ 𝐬𝑖. (33)
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Again, when the interaction between 𝐱𝑖 and 𝐲𝑖 are considered as in 𝜅(𝐱𝑖, 𝐲𝑖), 𝐬𝑖 and �̄�𝑖 may be considered as the “far-field" and
“near-field" subsets of 𝐱𝑖, respectively. Note that the reason why we take the intersection with

{

𝜔2𝑘−2
|

𝑛
2𝑙+2

≤ 𝑘 < 3𝑛
2𝑙+2

}

in (33)
is for the purpose of separation in distance similar to (23). This ensures that, if we set 𝐬 = 𝐬𝑖 and 𝐭 = 𝐲𝑖 in Definition 1, then
gap(𝐬, 𝐭) and span(𝐬) satisfy (14) and 𝐬 and 𝐭 are well separated. See Figure 8(b). In the meantime, the size of the near-field
subset �̄�𝑖 remains reasonably small, which can be seen soon.

s̃a1

s̄a1

s̄a1

s̃a2
s̄a2

s̄a2

yi

s̄i

si

s̄i

yi

s̄i

s̃i

s̄i

yi

(a) �̂�𝑎1= �̄�𝑎1∪�̃�𝑎1 , �̂�𝑎2= �̄�𝑎2∪�̃�𝑎2 (b) 𝐬𝑖 (c) After sparsification

Figure 8 Forming 𝐱𝑖 = �̂�𝑎1 ∪ �̂�𝑎2 and 𝐬𝑖 and sparsifying 𝐬𝑖 into �̃�𝑖 for a nonleaf node 𝑖.

Then just like in the previous subsection, an analytical compression step can be applied to 𝜅(𝐬𝑖, 𝐲𝑖). Choose proxy points on
a circle with center 𝑐 and radius 𝛾 , where

𝑐 = 𝜔
𝑛
2𝑙
−1, 𝛾 =

√

|1 − 𝑐| ⋅ |𝜔
𝑛

2𝑙+1 − 𝑐|.

(𝑐 is still the argument center of 𝐱𝑖.) The proxy point method followed by an SPRR factorization sparsifies the set 𝐬𝑖 to �̃�𝑖 of size
|�̃�𝑖| = 𝑟. See Figure 8(c). Similarly to (26) and (30), we then obtain

𝜅(𝐬𝑖, 𝐲𝑖) ≈ Π(𝑙)
(

𝐼
𝐸(𝑙)

)

𝜅(�̃�𝑖, 𝐲𝑖), (34)

𝜅(𝐱𝑖, 𝐲𝑖) ≈ 𝑈 (𝑙)𝜅(�̂�𝑖, 𝐲𝑖), with 𝑈 (𝑙) = 𝑃 (𝑙)
(

𝐼
�̂�(𝑙)

)

, (35)

where �̂�𝑖 is given as in (29) and corresponds to a row index set �̂�(𝑙) in 𝜅(𝐱𝑖, 𝐲𝑖), 𝑃 (𝑙) is a permutation matrix, and �̂�(𝑙) =
(

0 𝐸(𝑙) )

has bounded entries.
Note that

|𝐬𝑖| = |�̄�𝑖| =
𝑛

2𝐿+1
+ 𝑟(𝐿 − 𝑙), |�̂�𝑖| =

𝑛
2𝐿+1

+ 𝑟(𝐿 − 𝑙 + 1). (36)
The reason for this is as follows. For 𝑖 at level 𝐿, (31) holds. For 𝑖 at level 𝐿 − 1 with children 𝑎1 and 𝑎2, �̄�𝑖 is formed by 𝑛

2𝑙+2points of �̄�𝑎1 , 𝑛
2𝑙+2

points of �̄�𝑎2 , and 𝑟 points from �̃�𝑎1 and �̃�𝑎2 . (The points in �̃�𝑎1 and �̃�𝑎2 are sampled from 𝐬𝑎1 and 𝐬𝑎2 , respectively,
in the same way, and together their contributions to �̄�𝑖 has 𝑟 points.) Then, for 𝑖 at any level 𝑙, (36) can be shown by induction.
Thus, the size of the near-field set �̄�𝑖 in (36) is reasonably small. (This also indicates that the resulting numerical ranks of the
HSS blocks scale logarithmically, which is consistent with previous results in References4, 13, 33.)
Remark 1. At this point, it is clear why we split the source set 𝐱𝑖 instead of the target set 𝐲𝑖. It is because 𝐱𝑖 is sparsified after the
compression while 𝐲𝑖 is not. The sparsification of 𝐱𝑖 ensures the near-field subset �̄�𝑖 has cardinality as in (36) that only increases
slightly when we move to an upper level. On the other hand, if we split 𝐲𝑖, it would need a near-field subset of 𝐲𝑖 to have a
potentially large number of points since the argument span of each source set roughly doubles whenever we move to an upper
level.

Now, from (32) and the HSS construction process in Reference31, we can set the HSS generators 𝑅𝑎1 , 𝑅𝑎2 as
(

𝑅𝑎1
𝑅𝑎2

)

= 𝑈 (𝑙).

Again from Proposition 1, for any other node 𝑖 at the same level 𝑙, the same 𝑅𝑎1 , 𝑅𝑎2 generators are used.
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Also, for the purpose of extracting 𝐵 generators later, we introduce the following index set (as a column vector):
𝐉(𝑙) =

(

𝐉(𝑙+1)
𝐉(𝑙+1) + 𝑛

2𝑙+1

)

|

|

|

|

|�̂�(𝑙)
, (37)

where 𝐉(𝐿) = �̂�(𝐿). 𝐉(𝑙) is used to keep track of the index set of �̂�𝑖 in 𝐱 or the row index set of 𝜅(�̂�𝑖, 𝐲𝑖) in 𝐶 .
This process is performed until every level 𝑙 > 0 of 𝑇 is visited. At that point, we get all the 𝑈,𝑅 generators in the HSS

approximation.

4.3 Other HSS generators
We now look at the 𝑉 ,𝑅,𝐵,𝐷 generators. As discussed in Section 3, Proposition 2 means 𝐶 |

𝑖 and (𝐶−
𝑖 )

𝑇 are closely related. In
fact, other than one row in 𝐶 |

𝑖 , the remaining subblock of 𝐶 |

𝑖 after a row permutation is a scalar multiple of (𝐶−
𝑖 )

𝑇 with one row
excluded. If we take an appropriate column 𝐶|𝐈𝑖×{𝑘} from 𝐶|𝐈𝑖×𝐈𝑖 (where the index 𝑘 corresponds to a point of 𝐲 right adjacent
to 𝐲𝑖) and put it next to 𝐶−

𝑖 , then the resulting matrix (𝐶|𝐈𝑖×{𝑘} 𝐶−
𝑖 ) has a subblock as a scalar multiple of (𝐶 |

𝑖 )
𝑇 after a column

permutation. Thus indeed, a numerical column basis matrix for (𝐶|𝐈𝑖×{𝑘} 𝐶−
𝑖 ) may be reused as a numerical column basis

matrix for (𝐶 |

𝑖 )
𝑇 . On the other hand, since 𝐶|𝐈𝑖×{𝑘} only adds an extra target point to the target set 𝐲𝑖 and a basis matrix like 𝐺𝑖 in

(24) is only defined based on the source set 𝐬𝑖 and the proxy points 𝐳𝑖, the basis matrix 𝐺𝑖 from the proxy point method applied
to 𝐶−

𝑖 can still serve as a numerical column basis matrix for (𝐶|𝐈𝑖×{𝑘} 𝐶−
𝑖 ). The impact on the accuracy is negligible due to the

separation between the source and target sets. Accordingly, 𝐺𝑖 can still serve as a numerical column basis matrix for (𝐶 |

𝑖 )
𝑇 .

As a result, we can obtain the 𝑉 ,𝑊 generators by setting for each leaf 𝑖,
𝑉𝑖 = 𝑈 (𝐿).

Similarly, for each nonleaf 𝑖 at level 𝑙 with children 𝑎1, 𝑎2, we set
(

𝑊𝑎1
𝑊𝑎2

)

= 𝑈 (𝑙).

These basis matrices are the same for all 𝑖 at the same level due to Proposition 1.
Next, due to the forms of 𝑈 (𝐿) in (28) and 𝑈 (𝑙) in (35), the 𝐵𝑖 generator is essentially a submatrix of 𝐶 . We can use the index

sets defined in (37) to pick, for a left node 𝑖 at level 𝑙,
𝐵𝑖 = 𝐵(𝑙,1) ≡ 𝐶|𝐉(𝑙)×(𝐉(𝑙)+ 𝑛

2𝑙
),

and for a right node 𝑖 at level 𝑙,
𝐵𝑖 = 𝐵(𝑙,2) ≡ 𝐶|(𝐉(𝑙)+ 𝑛

2𝑙
)×𝐉(𝑙) .

Lastly, for the (leaf-level) 𝐷 generators, we need only to store 𝐷1 = 𝜅(𝐱1, 𝐱1). Lemma 1 means that this can be used to obtain
the 𝐷𝑖 generators for any other leaf 𝑖.

Overall, we need only to obtain the matrices 𝑈 (𝑙), 𝐵(𝑙,1), 𝐵(𝑙,2) at each level 𝑙 as well as 𝐷1 at the leaf level. They are sufficient
to write out all the HSS generators of the HSS approximation to 𝐶 . The basis generators 𝑈, 𝑉 ,𝑊 ,𝑅 are provided by 𝑈 (𝑙) which
is defined by a permutation matrix and a matrix 𝐸(𝑙) like in (28) or (35). For 𝐷1 and each 𝐵 generator, it just needs to store the
associated index sets.

5 ALGORITHM ANALYSIS AND PERFORMANCE

Algorithm 1 details the construction process. At each level of the HSS tree 𝑇 , one HSS block is compressed. The corresponding
point set is sparsified. The compression information is then used for the other HSS blocks at the same level. We would like to
mention that the assumption that 𝑛 is a power of 2 and the use of uniform block partitioning are merely for convenience. For
general 𝑛 with nonuniform partitioning, we may just compress the HSS block row (or column) with the largest row (or column)
size at each level.

The scheme clearly leads to an overall sublinear complexity with a sublinear storage, as verified by the following proposition.
Proposition 3. Let𝐿 = 𝑂(log 𝑛) and let 𝑟 be the number of proxy points used in each far-field compression step of the algorithm.
Then the algorithm described above constructs the HSS approximation in 𝑂(𝑟3 log2 𝑛) flops with 𝑂(𝑟2 log2 𝑛) storage for the
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Algorithm 1 Sublinear complexity HSS approximation for 𝐶
procedure (𝐷1, 𝑈1, 𝑅(𝑙), 𝐵(𝑙)) = SublinearHSS(𝑇 , 𝜏) ⊳ 𝑇 : HSS tree with 𝐿 levels

𝑟 ← 𝑂(| log2 𝜏|) ⊳ Number of proxy points per level
𝑖 ← 1
𝐱𝑖 ←

(

𝜔2𝑘−2)

0≤𝑘< 𝑛
2𝐿

⊳ Indices ordered by increasing 𝑘
𝐷𝑖 ← 𝐶|𝐬𝑖×𝐬𝑖
for 𝑙 = 𝐿,𝐿 − 1,… , 1 do ⊳ Levelwise traversal of the HSS tree

if 𝑖 is a non-leaf node then
𝑎1 ← left child of 𝑖
𝐱𝑖 ←

(

�̂�𝑎1 , 𝜔
𝑛
2𝑙 �̂�𝑎1

)

⊳ Assembling 𝐱𝑖 using �̂�𝑎1 from the child level; 𝜔 𝑛
2𝑙 �̂�𝑎1 : entrywise product

end if
𝐬𝑖 ← 𝐱𝑖 ∩

{

𝜔2𝑘−2
|

𝑛
2𝑙+2

≤ 𝑘 < 3𝑛
2𝑙+2

}

⊳ Far field
�̄�𝑖 ← 𝐱𝑖 ⧵ 𝐬𝑖 ⊳ Near field
𝑐 = 𝜔

𝑛
2𝑙
−1 ⊳ Center for proxy points

𝛾 =
√

|1 − 𝑐| ⋅ |𝜔
𝑛

2𝑙+1 − 𝑐| ⊳ Radius of proxy circle
𝐳 ← uniformly-spaced points on circle with center 𝑐 and radius 𝛾

⊳ Proxy points
𝜅(𝐬𝑖, 𝐳) ≈ 𝑈 (𝑙)𝜅(�̃�𝑖, 𝐳) ⊳ Rank-𝑟 SPRR factorization to get �̃�𝑖 ⊂ 𝐬𝑖
�̂�𝑖 ← �̄�𝑖 ∪ �̃�𝑖 ⊳ Reordered counterclockwise in ℂ starting at 1
if 𝑙 = 𝐿 then

𝑈𝑖 ← 𝑈 (𝑙)

else
(

𝑅𝑎1
𝑅𝑎2

)

← 𝑈 (𝑙) ⊳ 𝑎1, 𝑎2: children of 𝑖
end if
𝐉𝑖 ← index set corresponding to �̂�𝑖 in 𝐱
𝐵𝑖 ← 𝐶|𝐉𝑖×(2𝐿−𝑙+𝐉𝑖), 𝐵𝑖+1 ← 𝐶|(2𝐿−𝑙+𝐉𝑖)×𝐉𝑖
𝑖 ← parent of 𝑖 in 𝑇

end for
end procedure

HSS generators if the 𝐵 generators are not explicitly formed. An extra 𝑂(𝑟2 log3 𝑛) cost and 𝑂(𝑟2 log3 𝑛) storage are needed for
the 𝐵 generators. In addition, the 𝐵 generators at level 𝑙 have sizes 𝑂 (𝑟(𝐿 − 𝑙)).
Proof. At each level 𝑙, associated with the leftmost node 𝑖, the cost to form 𝐺𝑖 like in (24) is 𝑂

(

𝑟
(

𝑛
2𝐿+1

+ 𝑟(𝐿 − 𝑙)
))

flops,
since 𝐺𝑖 has size |𝐬𝑖|× 𝑟 with |𝐬𝑖| in (36). The factorization of 𝐺𝑖 in (25) costs 𝑂

(

𝑟2
(

𝑛
2𝐿+1

+ 𝑟(𝐿 − 𝑙)
))

. The total compression
cost at all levels is then

𝐿
∑

𝑙=1
𝑂
(

𝑟2
( 𝑛
2𝐿+1

+ 𝑟(𝐿 − 𝑙)
))

= 𝑂(𝑟3𝐿2).

The storage is mainly for 𝐸(𝑙) in (34) and for some index vectors and looks like
𝐿
∑

𝑙=1
𝑂
(

𝑟
( 𝑛
2𝐿+1

+ 𝑟(𝐿 − 𝑙)
))

= 𝑂(𝑟2𝐿2).

The 𝐵 generators at level 𝑙 have sizes |𝐉(𝑙)| with 𝐉(𝑙) in (37), which is also |�̂�(𝑙)|. Now, |�̂�(𝑙)| = |�̂�𝑖| = 𝑂 (𝑟(𝐿 − 𝑙)) from (36). If
additionally we explicitly form 𝐵 generators, then the extra cost is

𝐿
∑

𝑙=1
𝑂
(

(𝑟(𝐿 − 𝑙))2
)

= 𝑂(𝑟2𝐿3).

(Note that the cost for forming 𝐷1 is only 𝑂(𝑟2).)
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From this proposition, we can see that the resulting HSS approximation has 𝐵 generators at level 𝑙 with sizes 𝑂 (𝑟(𝐿 − 𝑙)) =
𝑂(log 𝑛). This reflects the off-diagonal ranks of the HSS form. With the compression of each far-field blocks satisfying the
accuracy in (9), it is convenient to apply a result in Reference27 to obtain a global approximation error, which is roughly𝑂(𝜏𝑟log 𝑛).

To illustrate the performance of the algorithm, we apply it to 𝐶 with matrix sizes 𝑛 = 27, 28,… , 270. The leaf-level diagonal
block size is 128. The number of proxy points 𝑟 = 25 is used for all the compression steps, which is also the numerical rank in
(25). To get (25), we use a rank-revealing QR factorization with row pivoting in the implementation of our algorithms. Its flop
count follows that in Reference11. The pivoted QR factorization may be less accurate than the strong rank-revealing factorization.
However, it is usually more efficient and works reasonably well in practical tests. The accuracy results in Table 1 vindicate this.

In Figure 9(a), we give flop counts in the construction of the 𝐷,𝑈,𝑅, 𝑉 ,𝑊 generators using Algorithm 1. For these genera-
tors, we also need a number of function evaluations to precompute selected points from (2) on the unit circle. For completeness,
we count these function evaluations in Figure 9(b). It is evident that both counts asymptotically follow the 𝑂(log2 𝑛) pattern, as
predicted by Proposition 3.
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(a) Cost (excluding function evaluations) (b) Number of function evaluations

Figure 9 Numbers of flops and exponential function evaluations for the construction of the 𝐷,𝑈,𝑅, 𝑉 ,𝑊 generators for 𝐶 with
varying 𝑛, where (a) includes all flop counts not associated with the exponential function evaluations and (b) is for the number
of exponential function evaluations used to precompute selected points from (2).

To report the storage of the generators, we look at the “effective storage". That is, the generators are stored in an economic
way. The storage needed for the 𝐷 generators is for only 𝑟2 entries of 𝐷1 and is negligible. For the 𝑈,𝑅, 𝑉 ,𝑊 generators, only
the 𝐸 matrices like in (34) and some permutation vectors are stored. Such an effective storage count is given in Figure 10(a) and
also follows the 𝑂(log2 𝑛) pattern. The storage for the 𝐵 generators is shown in Figure 10(b) and follows the 𝑂(log3 𝑛) pattern,
which is consistent with Proposition 3.
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Figure 10 Effective storage for the generators and total HSS construction timing.

Note that the cost for forming the 𝐵 generators is from the evaluation of the entries. Thus, it is simply proportional to the
storage count so that the plot in Figure 10(b) also reflects the cost to form the 𝐵 generators. Then the overall cost of the algorithm
behaves like 𝑂(log3 𝑛), which corroborates that the algorithm has sublinear complexity. This can also be observed from the
computational time (in Matlab running on a computing cluster node with two 2.6GHz CPUs). See Figure 10(c). Note that even
in Matlab, it takes only about 57 seconds for the HSS construction for the matrix size as large as 𝑛 = 270 ≈ 1.18𝑒21.
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Also, in Figures 11, we plot the cardinalities of 𝐬𝑖, �̃�𝑖, 𝐱𝑖, and �̂�𝑖 at each hierarchical level for 𝐶 of size 𝑛 = 234 ≈ 1.72𝑒10.
(Such cardinalities are the same for all 𝑖 at each level 𝑙 = 1, 2,… , 𝐿, with 𝐿 = 28.) The cardinalities of 𝐬𝑖, �̂�𝑖, and 𝐱𝑖 demonstrate
linear growth with respect to 𝐿 − 𝑙. |�̃�𝑖| remains constant. This illustrates the compactness of the resulting HSS generators and
accordingly validates the counts predicted by Proposition 3.
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(a) Cardinalities of 𝐬𝑖 and �̃�𝑖 (b) Cardinalities of 𝐱𝑖 and �̂�𝑖

Figure 11 Cardinalities of 𝐬𝑖, �̃�𝑖, 𝐱𝑖, and �̂�𝑖 at different levels, where 𝑛 = 234, 𝐿 = 28.

Next, Table 1 shows the relative error ‖�̃�−𝐶‖𝐹

‖𝐶‖𝐹
for the HSS approximation �̃� to 𝐶 constructed using Algorithm 1. Due to the

high expense for dense matrices, we only report the accuracy for smaller 𝑛. The other parameters are the same as above. It is
clear that the compact HSS approximations constructed with our sublinear complexity algorithm achieve desirable accuracies.

Table 1 Relative error for the HSS approximation �̃� to the dense matrix 𝐶 .

𝑛 28 29 210 211 212 213

‖�̃�−𝐶‖𝐹

‖𝐶‖𝐹
4.08𝑒 − 13 4.29𝑒 − 13 3.18𝑒 − 13 2.71𝑒 − 13 5.13𝑒 − 13 7.75𝑒 − 13

Finally, Table 2 compares the cost of Algorithm 1 for the HSS construction (as in Figure 9(a)) with the cost of matrix-vector
multiplications using the resulting HSS forms. As the matrix size doubles, the flops of the matrix-vector multiplication grow
nearly linearly, while those of the HSS construction grow far more slowly. Also, the flops in the table required by the matrix-
vector multiplication are now greater, showing that the associated HSS construction is no longer the performance bottleneck.

Table 2 Comparison between the flops of Algorithm 1 (as in Figure 9(a)) with the flops of matrix-vector multiplications using
the resulting HSS forms.

𝑛 211 212 213 214 215 216

HSS construction 6.71𝑒5 9.48𝑒5 1.27𝑒6 1.65𝑒6 2.07𝑒6 2.54𝑒6

HSS matrix-vector multiplication 3.51𝑒6 7.60𝑒6 1.60𝑒7 3.29𝑒7 6.71𝑒7 1.36𝑒8
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6 GENERALIZATIONS

Our discussions above are given in terms of the important class of Cauchy matrices with regularly-spaced points on the unit
circle. Going forward, we can extend these ideas to other kernel matrices defined on a set of points with regular geometry as
follows. Since the compression step for each HSS row block 𝐶−

𝑖 only relies on the factor 𝐺𝑖 in (24), it is feasible to apply the
ideas here to other problems. For example, reusing the same row basis 𝑈 (𝑙) as in (35) across all the HSS block rows at the same
level is possible whenever the relative geometry of the proxy points and the enclosed points are the same due to symmetry. See
Figure 12 for two examples. In our construction algorithm for 𝐶 , we make use of the circle symmetry of the points in question,
shown in Figure 12(a), to reuse generators. This idea also applies to other types of symmetries such as the line symmetry in
Figure 12(b), when the kernel in question is evaluated at equally-spaced points on the line.

(a) Circle symmetry (b) Line symmetry

Figure 12 Symmetry of the proxy point contours (dotted lines) and their enclosed points 𝐬𝑖 (■).

Moreover, problems involving other kernel functions 𝜉(𝑥, 𝑦) evaluated at more general point sets may also benefit from our
ideas. In particular, let 𝐴 = 𝜉(𝐱, 𝐲) for some kernel function 𝜉(𝑥, 𝑦) and finite sets 𝐱, 𝐲 ⊆ ℂ, and let 𝐱𝑖, 𝐲𝑖 be the points associated
with the 𝑖th HSS block row 𝐴−

𝑖 . Suppose that for each 𝑦 ∈ 𝐲𝑖, 𝜉(𝑥, 𝑦) is complex-analytic in 𝑥 on a region containing a circular
contour around a far-field subset 𝐬𝑖 of 𝐱𝑖. Let 𝐳𝑖 be the associated set of proxy points. Then, using a Cauchy integration strategy
like in Reference35, we may construct the following proxy point approximation:

𝜉(𝐬𝑖, 𝐲𝑖) ≈ 𝜅(𝐬𝑖, 𝐳𝑖)𝜉0(𝐳𝑖, 𝐲𝑖), (38)
where 𝜅 is still the Cauchy kernel in (1) and 𝜉0 depends on 𝜉 and 𝑖. Here the basis matrix 𝜅(𝐬𝑖, 𝐳𝑖) is then similar to that in (7). If
this approximation yields an identical 𝜅(𝐬𝑖, 𝐳𝑖) for each 𝑖, we may apply the basis reuse idea from our earlier discussion. In our
forthcoming work17, we show that this is indeed the case for kernel matrices that have Toeplitz structures. Specifically, an 𝑛× 𝑛
Toeplitz matrix may be viewed as a kernel matrix given by the evaluation of a certain function 𝑓 (𝑥−𝑦) on the point set {1 ∶ 𝑛}.
That is, 𝑇𝑖,𝑗 = 𝑓 (𝑗 − 𝑖) for 1 ≤ 𝑖, 𝑗 ≤ 𝑛. For certain such 𝑓 , it can be shown that we can apply our technique from Section 4
to directly construct HSS approximations in sublinear complexity. Note that it is also possible to apply this technique to other,
non-Toeplitz kernel matrices with point symmetry, such as the Hilbert matrix.

Additionally, it may be possible to consider other, non-circular contours for the proxy point approximation. In general, the
techniques outlined here do require point symmetries. It may also be possible to extend the techniques to higher dimensions
with sufficiently nice point symmetries, which is worth studying in future work. A possible strategy is to integrate some of our
strategies into the methods in References2, 3, 8.

Another way to generalize the work is to design preconditioners. For problems where the point sets are not uniform or it is
difficult to find proxy point sets with the desired symmetries, we may choose appropriate uniform point sets or proxy point sets
with symmetry so as to construct preconditioners in sublinear complexity. The resulting preconditioners may then be applied
quickly via rank-structured solvers.

As mentioned earlier, the ideas in the paper mainly focus on accelerating the structured approximation stage of fast algorithms
for some kernel matrices. In general, subsequent matrix-vector multiplications or linear system solutions need at least 𝑂(𝑛)
complexity since an associated vector or right-hand side 𝑏 itself has 𝑂(𝑛) data. However, it is possible to take advantage of our
ideas to further reduce this cost in some applications, where 𝑏 is also structured. For example, sometimes 𝑏 may be approximated
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by low-rank forms after reshaping. Then the shared basis generators produced by our method may be multiplied with the low-rank
basis matrices from the reshaped 𝑏. The results can then be shared across multiple nodes at each level of the tree.

CONCLUSIONS

In this work, we have outlined a new method to construct a rank-structured approximation to a type of important Cauchy matrices.
These Cauchy matrices arise from intermediate steps of direct Toeplitz solvers and computations with some kernel matrices.
The new method relies on the reuse of a low-rank basis matrix for all HSS blocks at a given HSS level, the fast computation of
this basis matrix using a proxy point method, and a analytical hierarchical compression scheme. The feasibility of the basis reuse
and an optimal parameter choice in the analytical compression are analyzed. The novel combination of these ideas effectively
reduce the number of compression steps from the usual 𝑂(𝑛) to 𝑂(log 𝑛), leading to sublinear complexity and storage of the
resulting algorithm. The new efficiency is confirmed both theoretically and numerically. We also note that the ideas may be
further extended to different contexts to obtain similarly quick rank-structured approximation for more general kernel matrices.
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