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Abstract. We establish and prove polynomial formulas for the Frobenius
numbers of numerical semigroups generated by n

2
, (n + 1)2, (n + 2)2 and by

n
3
, (n+1)3, (n+2)3. The formulas depend on the residue class of n modulo 4

and 18, respectively.

1. Introduction

A numerical semigroup is a subset of N0 that contains 0, is closed under
addition, and is missing only finitely many positive integers. The largest integer
not in the numerical semigroups is called its Frobenius number. In this paper we
denote by g(a1, . . . , ak) the Frobenius number of the numerical semigroup generated
by 〈a1, . . . , ak〉. For example, g(2, 3) = 1, g(5, 6, 7) = 9. The formula g(a1, a2) =
a1a2−a1−a2 is usually attributed to Sylvester (see [10] or [6, p. 31]). By contrast,
Curtis proved that there is no finite set of polynomials such that for each a1, a2, a3
with common divisor 1, one of those polynomials gives g(a1, a2, a3) (see [1] or
[6, p. 35]). Furthermore, Ramı́rez Alfonsin [5] proved that the computation of
Frobenius number of a numerical semigroup generated by n integers is NP-hard
for variable n. However, formulas for special types of numerical semigroups have
been established, such as those for consecutive entries in an arithmetic sequence
(see Roberts [7] or [6, pp. 60-61]), for some types of geometric sequences (see Ong,
Ponomarenko [4]), or for certain entries in a Fibonacci sequence (see M. Marıin,
Ramıirez Alfonśın, Revuelta [3]). A comprehensive account of results concerning
the Frobenius number can be found in Ramı́rez Alfonsin’s book [6]. A more recent
paper by Dutch and Rickett [2] demonstrates that the growth rate of Frobenius
number of the numerical semigroup generated by n2, (n + 1)2, . . ., as a function
of n, is o(n2+ǫ) for any positive ǫ.

In this paper, we prove formulas for the Frobenius numbers of numerical semi-
groups generated by three consecutive squares, and for those generated by three
consecutive cubes. It is fairly elementary to compute any particular Frobenius
number; the accomplishment of this paper is in giving general formulas.

The work on consecutive squares was done by the second author for his senior
thesis at Reed College in 2009, and the work on consecutive cubes was done by
the first author during the summers of 2011 and 2012, both under the supervision
of the third author. In 2012 the first author was supported by a Fellowship for
Faculty-Student Collaborative Research from Reed College. In the original version
our proofs were hands-on using a mixture of linear algebra and number theory: we
showed first of all for each case that the purported Frobenius number is not in the
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semigroup, and then showed that every strictly larger number is in the semigroup.
We thank the anonymous referees for directing us to the paper [8] by Rødseth and
the paper [9] by Ramı́rez Alfonśın and Rødseth; these significantly shortened our
proofs. We also thank Alessio Sammartano for allerting us to [2].

Our work could not have been done without computer help, and we here de-
scribe the process. First, Frobenius numbers of specific numerical semigroups were
computed by Mathematica. A plot of g(n2, (n + 1)2, (n + 2)2) as a function of n
for thousands of n yielded three curves, and upon closer examination one of the
three curves was thicker and actually consisted of two close curves. Further ex-
perimentation determined that the four curves depended on n mod 4. With that
information, we considered Gr,n = g((4n + r)2, (4n + r + 1)2, (4n + r + 2)2) as
a function of n for each r = 0, 1, 2, 3. By Mathematica’s computations, G0,n/n

3

tends to 128 with n. This means that G0,n is roughly a polynomial in n of de-
gree 3 with leading coefficient 128. With that, again with Mathematica’s help,
(G0,n−128n3)/n seemingly has limit 20, and G0,n−128n3+20n has limit 5, giving
strong evidence that g((4n)2, (4n+ 1)2, (4n+ 2)2) = 128n3 − 20n− 5, at least for
large n. This paper gives a proof of this for n ≥ 4, as well as a proof of the other
cases for consecutive squares and cubes. Indeed, we get four polynomial functions
for squares and eighteen polynomial functions for cubes.

2. Rødseth’s algorithm

Rødseth [8] introduced the following algorithm for computing the Frobenius
number of a numerical semigroup generated by a, b, c. First one finds an integer
s0 ∈ {0, 1, 2, . . . , a− 1} such that

bs0 ≡ c mod a.

Then, starting with k = 1 and using s
−1 = a, one runs the Euclidean algorithm

with negative remainders:

sk−2 = qksk−1 − sk, 0 ≤ sk < sk−1,

until sl+1 = 0. (If s0 = 0, which does not happen in our cases below, then l is set
to 0.) With these qi Rødseth defines integers Pi with P

−1 = 0, P0 = 1, and

Pk = qkPk−1 − Pk−2, k = 1, 2, . . . , l + 1.

Since qk ≥ 2 and Pk > Pk−1, with the convention that s
−1

P
−1

= ∞, we have that

0 =
sl+1

Pl+1
<

sl
Pl

< · · ·
s1
P1

<
s0
P0

<
s
−1

P
−1

,

and so there exists a unique integer v such that

(2.1)
sv+1

Pv+1
≤

c

b
<

sv
Pv

.

The Frobenius number of the numerical semigroup generated by a, b, c is then

(2.2) g(a, b, c) = −a+ b(sv − 1) + c(Pv+1 − 1)−min{bsv+1, cPv}.

Note that it is not necessary to run the whole Euclidean algorithm, but only through
(v + 1) steps.

A modification of this procedure using the Euclidean algorithm with positive
remainders is in the paper [9] by Ramı́rez Alfonśın and Rødseth.



FROBENIUS NUMBERS 3

In case that a = ne, b = (n+1)e, c = (n+2)e, as (n+1)(1−n+n2−n3 + · · ·+
(−1)e−1ne−1) = 1 mod ne, it follows easily that

s0 = (1− n+ n2 − n3 + · · ·+ (−1)e−1ne−1)e(n+ 2)e mod ne.

In particular, when e = 2, s0 = n2− 4n+4 for n ≥ 4, and when e = 3, s0 = 18n2−
12n+8 for n ≥ 18. One may be lead to believe that the roles of 4 and 18 for these s0
are the cause of why we need 4 and respectively 18 formulas for Frobenius numbers,
however, by the same reasoning, for e = 4, with s0 = n4−88n3+56n2−32n+16 for
n ≥ 88, we would require 88 formulas, whereas experimental tests make us believe
that we need 40 formulas.

3. Frobenius number of three consecutive squares

Here are a few Frobenius numbers generated by three consecutive squares (omit-
ting the void case containing 1): g(4, 9, 16) = 23, g(9, 16, 25) = 119, g(16, 25, 36) =
167, g(25, 36, 49) = 312, g(64, 81, 100) = 1103, and g(144, 169, 196) = 3479. The
next theorem proves the general formulas for the Frobenius numbers of the numer-
ical semigroups generated by all other instances of three consecutive squares:

Theorem 3.1. The Frobenius number of the numerical semigroup generated by

three consecutive squares n2, (n+ 1)2, (n+ 2)2 is as follows:



















2n3 − 5n− 5, if n ≡ 0 mod 4, and n ≥ 16,

(5/2)n3 + (1/2)n2 − 6n− 6, if n ≡ 1 mod 4, and n ≥ 9,

2n3 + 2n2 − n− 3, if n ≡ 2 mod 4, and n ≥ 6,

(17/4)n3 + (9/4)n2 − 8n− 8, if n ≡ 3 mod 4, and n ≥ 7.

In other words,

g
(

(4m)2, (4m+ 1)2, (4m+ 2)2
)

= 128m3 − 20m− 5, if m ≥ 4,

g
(

(4m+ 1)2, (4m+ 2)2, (4m+ 3)2
)

= 160m3 + 128m2 + 10m− 9, if m ≥ 2,

g
(

(4m+ 2)2, (4m+ 3)2, (4m+ 4)2
)

= 128m3 + 224m2 + 124m+ 19, if m ≥ 1,

g
(

(4m+ 3)2, (4m+ 4)2, (4m+ 5)2
)

= 272m3 + 648m2 + 481m+ 103, if m ≥ 1.

Thus the formula for g(n2, (n+1)2, (n+2)2) depends on n mod 4, and is even-
tually periodically polynomial.

Proof. Let n be any positive integer. As noted in the previous section, s0 = n2 −
4n+ 4, so that the Euclidean algorithm in Rødseth’s procedure starts as:

s
−1 = n2,

s0 = n2 − 4(n− 1),

s1 = 2s0 − s
−1 = n2 − 8n+ 8 = n2 − 2 · 4(n− 1),

s2 = 2s1 − s0 = n2 − 3 · 4(n− 1),

...

sk = 2sk−1 − sk−2 = n2 − (k + 1) · 4(n− 1),
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as long as n2 − (k + 1) · 4(n − 1) ≥ 0, i.e., as long as n2

4(n−1) ≥ k + 1. Note that

s
−1 > s0 > s1 > · · · > sk for n ≥ 4, as needed for Rødseth’s algorithm. Since all qi
are 2, it follows by induction that Pi = 2Pi−1 − Pi−2 = i+ 1 for i = 1, . . . , k.

The simplest case is when n = 4m+3 for some integer m ≥ 1. The (start of the)
Euclidean algorithm in the first paragraph continues until k = m as sm = (4m +
3)2−(m+1)·4(4m+2) = 1. Note that sm−1 = sm+4(n−1) = 1+4(4m+2) = 16m+9
and so that

sm
Pm

=
1

m+ 1
<

(4m+ 5)2

(4m+ 4)2
< 16 <

16m+ 9

m
=

sm−1

Pm−1
,

so that v = m− 1, and by Equation 2.2,

g((4m+ 3)2, (4m+ 4)2, (4m+ 5)2)

= −(4m+ 3)2 + (4m+ 4)2(16m+ 9− 1) + (4m+ 5)2(m+ 1− 1)

−min{(4m+ 4)2 · 1, (4m+ 5)2 ·m}

= −(4m+ 3)2 + (4m+ 4)2(16m+ 8) + (4m+ 5)2m− (4m+ 4)2

= 272m3 + 648m2 + 481m+ 103.

Now let n = 4m for some integer m ≥ 4. The procedure in the first paragraph
continues until k = m − 1 as sm−1 = (4m)2 − m · 4(4m − 1) = 4m = n and as
n 6≥ 4(n−1). Observe that sm−2 = sm−1+4(n−1) = 20m−4, so that by continuing
the Euclidean algorithm one more step we get

sm = 5sm−1 − sm−2 = 5(4m)− (20m− 4) = 4,

and Pm = 5Pm−1 − Pm−2 = 5m− (m− 1) = 4m+ 1. As

sm
Pm

=
4

4m+ 1
<

(4m+ 2)2

(4m+ 1)2
< 4 =

4m

m
=

sm−1

Pm−1
,

it follows that v = m− 1, and by Equation 2.2,

g((4m)2, (4m+ 1)2, (4m+ 2)2)

= −(4m)2 + (4m+ 1)2(4m− 1) + (4m+ 2)2(4m+ 1− 1)

−min{(4m+ 1)2 · 4, (4m+ 2)2 ·m}

= −(4m)2 + (4m+ 1)2(4m− 1) + (4m+ 2)2(4m)− (4m+ 1)2 · 4

= 128m3 − 20m− 5.

(Note that the “minimum” part above forces m ≥ 4 for a clean formula.)
Now let n = 4m+1 for some integerm ≥ 2. The procedure in the first paragraph

continues until k = m − 1 as sm−1 = (4m + 1)2 − m · 4(4m) = 8m + 1. Observe
that sm−2 = sm−1 + 4(n− 1) = 24m+ 1. By continuing the Euclidean algorithm
one more step we get

sm = 3sm−1 − sm−2 = 3(8m+ 1)− (24m+ 1) = 2,

and Pm = 3Pm−1 − Pm−2 = 3m− (m− 1) = 2m+ 1. As

sm
Pm

=
2

2m+ 1
<

(4m+ 3)2

(4m+ 2)2
< 8 <

8m+ 1

m
=

sm−1

Pm−1
,

it follows that v = m− 1, and by Equation 2.2,

g((4m+ 1)2, (4m+ 2)2, (4m+ 3)2)
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= −(4m+ 1)2 + (4m+ 2)2(8m+ 1− 1) + (4m+ 3)2(2m+ 1− 1)

−min{(4m+ 2)2 · 2, (4m+ 3)2 ·m}

= −(4m+ 1)2 + (4m+ 2)2(8m) + (4m+ 3)2(2m)− (4m+ 2)2 · 2

= 160m3 + 128m2 + 10m− 9.

(Note that the “minimum” part forces m ≥ 2 for a clean formula.)
Finally, let n = 4m + 2 for some integer m ≥ 1. The procedure in the first

paragraph continues until k = m−1 as sm−1 = (4m+2)2−m ·4(4m+1) = 12m+4.
Observe that sm−2 = sm−1 + 4(n − 1) = 28m + 8. We continue the Euclidean
algorithm three more steps to get

sm−2 = 28m+ 8 = 3(12m+ 4)− (8m+ 4) = 3sm−1 − sm, i.e., sm = 8m+ 4,

sm−1 = 12m+ 4 = 2(8m+ 4)− (4m+ 4) = 2sm − sm+1, i.e., sm+1 = 4m+ 4,

sm = 8m+ 4 = 2(4m+ 4)− 4 = 2sm+1 − sm+2, i.e., sm+2 = 4.

This gives

Pm = 3Pm−1 − Pm−2 = 3m− (m− 1) = 2m+ 1,

Pm+1 = 2Pm − Pm−1 = 2(2m+ 1)−m = 3m+ 2,

Pm+2 = 2Pm+1 − Pm = 2(3m+ 2)− (2m+ 1) = 4m+ 3.

As
sm+2

Pm+2
=

4

4m+ 3
<

(4m+ 4)2

(4m+ 3)2
<

4m+ 4

3m+ 2
=

sm+1

Pm+1
,

it follows that v = m+ 1, and by Equation 2.2,

g((4m+ 2)2, (4m+ 3)2, (4m+ 4)2)

= −(4m+ 2)2 + (4m+ 3)2(4m+ 4− 1) + (4m+ 4)2(4m+ 3− 1)

−min{(4m+ 3)2 · 4, (4m+ 4)2 · (3m+ 2)}

= −(4m+ 2)2 + (4m+ 3)2(4m+ 3) + (4m+ 4)2(4m+ 2)− (4m+ 3)2 · 4

= 128m3 + 224m2 + 124m+ 19.

This proves the second formulation of Frobenius numbers in the statement of
the theorem. The first set of formulas is now a straightforward derivation. �

4. Frobenius number of three consecutive cubes

The Frobenius numbers of numerical semigroups generated by three consecutive
cubes are given by 18 polynomial formulas. We first define the candidate functions:

g0(n) =(2/3)n5 + (55/18)n4 + (23/3)n3 + (43/3)n2 + (77/9)n− 1,

g1(n) =(1/3)n5 + (34/9)n4 + (128/9)n3 + (88/3)n2 + (211/9)n+ 35/9,

g2(n) =(2/3)n5 + (55/18)n4 + (53/9)n3 + 9n2 + (29/9)n− 25/9,

g3(n) =(1/3)n5 + (34/9)n4 + 16n3 + (104/3)n2 + (259/9)n+ 17/3,

g4(n) =(2/3)n5 + (55/18)n4 + (61/9)n3 + (35/3)n2 + (53/9)n− 17/9,

g5(n) =(1/3)n5 + (34/9)n4 + (64/9)n3 + 8n2 + (19/9)n− 29/9,

g6(n) =(2/3)n5 + (55/18)n4 + (7/3)n3 − (5/3)n2 − (67/9)n− 19/3,

g7(n) =(1/3)n5 + (34/9)n4 + (32/9)n3 − (8/3)n2 − (77/9)n− 61/9,
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g8(n) =(2/3)n5 + (55/18)n4 + (5/9)n3 − 7n2 − (115/9)n− 73/9,

g9(n) =(1/3)n5 + (34/9)n4 + (16/3)n3 + (8/3)n2 − (29/9)n− 5,

g10(n) =(2/3)n5 + (55/18)n4 + (13/9)n3 − (13/3)n2 − (91/9)n− 65/9,

g11(n) =(1/3)n5 + (34/9)n4 + (112/9)n3 + 24n2 + (163/9)n+ 19/9,

g12(n) =(2/3)n5 + (55/18)n4 + 5n3 + (19/3)n2 + (5/9)n− 11/3,

g13(n) =(1/3)n5 + (34/9)n4 + (80/9)n3 + (40/3)n2 + (67/9)n− 13/9,

g14(n) =(2/3)n5 + (55/18)n4 + (29/9)n3 + n2 − (43/9)n− 49/9,

g15(n) =(1/3)n5 + (34/9)n4 + (32/3)n3 + (56/3)n2 + (115/9)n+ 1/3,

g16(n) =(2/3)n5 + (55/18)n4 + (37/9)n3 + (11/3)n2 − (19/9)n− 41/9,

g17(n) =(1/3)n5 + (34/9)n4 + (16/9)n3 − 8n2 − (125/9)n− 77/9.

We find it easier to work with functions fr below, where fr(m) = gr(18m+ r):

f0(m) = 1259712m5 + 320760m4 + 44712m3 + 4644m2 + 154m− 1,

f1(m) = 629856m5 + 571536m4 + 190512m3 + 31752m2 + 2548m+ 75,

f2(m) = 1259712m5 + 1020600m4 + 332424m3 + 55404m2 + 4698m+ 157,

f3(m) = 629856m5 + 921456m4 + 532656m3 + 153144m2 + 21812m+ 1223,

f4(m) = 1259712m5 + 1720440m4 + 946728m3 + 263412m2 + 37082m+ 2107,

f5(m) = 629856m5 + 1271376m4 + 968112m3 + 355752m2 + 63828m+ 4499,

f6(m) = 1259712m5 + 2420280m4 + 1840968m3 + 693468m2 + 129322m+ 9537,

f7(m) = 629856m5 + 1621296m4 + 1590192m3 + 753624m2 + 173908m+ 15695,

f8(m) = 1259712m5 + 3120120m4 + 3061800m3 + 1488132m2 + 358074m+ 34087,

f9(m) = 629856m5 + 1971216m4 + 2398896m3 + 1429704m2 + 419252m+ 48539,

f10(m) = 1259712m5 + 3819960m4 + 4609224m3 + 2766636m2 + 826058m+ 98125,

f11(m) = 629856m5 + 2321136m4 + 3394224m3 + 2466936m2 + 892404m+ 128663,

f12(m) = 1259712m5 + 4519800m4 + 6483240m3 + 4648212m2 + 1665946m+ 238803,

f13(m) = 629856m5 + 2671056m4 + 4482864m3 + 3730536m2 + 1541908m+ 253539,

f14(m) = 1259712m5 + 5219640m4 + 8637192m3 + 7135452m2 + 2943162m+ 484897,

f15(m) = 629856m5 + 3020976m4 + 5758128m3 + 5458968m2 + 2576660m+ 484767,

f16(m) = 1259712m5 + 5919480m4 + 11117736m3 + 10433124m2 + 4892186m+ 917039,

f17(m) = 629856m5 + 3370896m4 + 7126704m3 + 7455240m2 + 3864564m+ 794987.

This section is devoted to proving the following theorem:

Theorem 4.1. The Frobenius number of the numerical semigroup generated by

three consecutive cubes (18m + r)3, (18m + r + 1)3 and (18m + r + 2)3 equals

gr(18m+ r) = fr(m), where r = 0, 1, . . . , 17, and m are as follows:

(1) m ≥ 0 if r = 11, 12, 13, 14, 15, 16.
(2) m ≥ 1 if r = 0, 1, 2, 3, 4, 5, 6, 9, 10.
(3) m ≥ 2 if r = 7.
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(4) m ≥ 4 if r = 8.
(5) m ≥ 15 if r = 17.

This theorem does not include all possible numerical semigroups generated by
three consecutive cubes. The missing cases are routine to verify:

g(23, 33, 43) = 181, g(33, 43, 53) = 1098,

g(43, 53, 63) = 2107, g(53, 63, 73) = 5249,

g(63, 73, 83) = 10745, g(73, 83, 93) = 21700,

g(83, 93, 103) = 38919, g(93, 103, 113) = 55222,

g(103, 113, 123) = 103589, g(173, 183, 193) = 881440,

g(253, 263, 273) = 4868957, g(263, 273, 283) = 9413533,

g(353, 363, 373) = 23887437, g(443, 453, 463) = 121672187,

g(533, 543, 553) = 171468734, g(623, 633, 643) = 656175201,

g(713, 723, 733) = 702420331, g(893, 903, 913) = 2107464204,

g(1073, 1083, 1093) = 5184832025, g(1253, 1263, 1273) = 11115847882,

g(1433, 1443, 1453) = 21540510999, g(1613, 1623, 1633) = 38633078456,

g(1793, 1803, 1813) = 65177647909, g(1973, 1983, 1993) = 104643740310,

g(2153, 2163, 2173) = 161261882627, g(2333, 2343, 2353) = 240099190564,

g(2513, 2523, 2533) = 347134951281, g(2693, 2703, 2713) = 489336206114.

Proof of Theorem 4.1. Let n be any positive integer. In Section 2 we derived
s0 = 18n2 − 12n + 8 for all n ≥ 18. The exceptional Frobenius numbers for
n = 2, 3, . . . , 10, 17 are given above, and it is straightforward to verify the stated
formulas for cases n = 11, 12, 13, 14, 15, 16. Below we thus assume that n ≥ 18. Set
n = 18m+ r for some integers m ≥ 1 and r = 0, 1, . . . , 17. Then

s
−1 = n3 = 5832m3 + 972m2r + 54mr2 + r3,

s0 = 18n2 − 12n+ 8 = 5832m2 + 648mr + 18r2 − 216m− 12r + 8,

s1 = (m+ 1)s0 − s
−1

= (5616− 324r)m2 + (636r − 36r2 − 208)m− r3 + 18r2 − 12r + 8,

and

P
−1 = 0, P0 = 1, P1 = m+ 1.

For the next step in the Euclidean algorithm, q2 varies with r, so we analyze the
eighteen cases of r separately below.

Case n = 18m for some integer m ≥ 1 (so r = 0): Then Rødseth’s algorithm
started above proceeds as follows:

s
−1 = n3 = 5832m3,

s0 = 5832m2 − 216m+ 8,

s1 = (m+ 1)s0 − s
−1 = s0 + (ms0 − s

−1) = s0 − (216m2 − 8m),

s2 = 2s1 − s0 = s0 − 2(216m2 − 8m),
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s3 = 2s2 − s1 = s0 − 3(216m2 − 8m),

...

sk = 2sk−1 − sk−2 = s0 − k · (216m2 − 8m),

as long as sk = s0 − k · (216m2 − 8m) ≥ 0, i.e., as long as

k ≤
s0

216m2 − 8m
=

5832m2 − 216m

216m2 − 8m
+

8

216m2 − 8m
= 27 +

8

216m2 − 8m
,

i.e., for k ≤ 27. With these by easy induction we have Pk = km + 1 for k =
1, 2, . . . , 27. Then

s27
P27

=
5832m2 − 216m+ 8− 27 · (216m2 − 8m)

27m+ 1
=

8

27m+ 1

<
(18m+ 2)3

(18m+ 1)3
<

216m2 − 8m+ 8

26m+ 1
=

s26
P26

,

so that v = 26. By Equation 2.2 then the Frobenius number in this case is

−(18m)3 + (18m+ 1)3(216m2 − 8m+ 8− 1) + (18m+ 2)3(27m+ 1− 1)

−min{(18m+ 1)3 · 8, (18m+ 2)3(26m+ 1)}

= −(18m)3 + (18m+ 1)3(216m2 − 8m+ 7) + (18m+ 2)3(27m)− (18m+ 1)3 · 8

= 1259712m5 + 320760m4 + 44712m3 + 4644m2 + 154m− 1,

which equals f0(m) as desired.

Case n = 18m + 1 for some integer m ≥ 1 (so r = 1): Rødseth’s algorithm
proceeds as follows:

s
−1 = n3 = 5832m3 + 972m2 + 54m+ 1,

s0 = 18n2 − 12n+ 8 = 5832m2 + 432m+ 14,

s1 = (m+ 1)s0 − s
−1 = s0 + (ms0 − s

−1) = s0 − (540m2 + 40m+ 1),

s2 = 2s1 − s0 = s0 − 2(540m2 + 40m+ 1),

...

s9 = 2s8 − s7 = s0 − 9 · (540m2 + 40m+ 1) = 972m2 + 72m+ 5,

s10 = 2s9 − s8 = s0 − 10 · (540m2 + 40m+ 1) = 432m2 + 32m+ 4,

and Pk = km+ 1 for k = 1, 2, . . . , 10. This continues further as

s11 = 3s10 − s9 = 324m2 + 24m+ 7, P11 = 3P10 − P9 = 3(10m+ 1)− (9m+ 1) = 21m+ 2,

s12 = 2s11 − s10 = 216m2 + 16m+ 10, P12 = 2P11 − P10 = 2(21m+ 2)− (10m+ 1) = 32m+ 3,

s13 = 2s12 − s11 = 108m2 + 8m+ 13, P13 = 2P12 − P11 = 2(32m+ 3)− (21m+ 2) = 43m+ 4,

s14 = 2s13 − s12 = 16, P14 = 2P13 − P12 = 2(43m+ 4)− (32m+ 3) = 54m+ 5.

Then
s14
P14

=
16

54m+ 5
<

(18m+ 3)3

(18m+ 2)3
<

108m2 + 8m+ 13

43m+ 4
=

s13
P13

,

so that v = 13. By Equation 2.2 then the Frobenius number in this case is

−(18m+ 1)3 + (18m+ 2)3(108m2 + 8m+ 13− 1) + (18m+ 3)3(54m+ 5− 1)
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−min{(18m+ 2)3 · 16, (18m+ 3)3(43m+ 4)}

= −(18m+ 1)3 + (18m+ 2)3(108m2 + 8m+ 12) + (18m+ 3)3(54m+ 4)− (18m+ 2)3 · 16

= 629856m5 + 571536m4 + 190512m3 + 31752m2 + 2548m+ 75,

which equals f1(m) as desired.

Case n = 18m+ 2 for some integer m ≥ 1:

s
−1 = n3 = 5832m3 + 1944m2 + 216m+ 8,

s0 = 18n2 − 12n+ 8 = 5832m2 + 1080m+ 56,

s1 = (m+ 1)s0 − s
−1 = 4968m2 + 920m+ 48 = s0 − (864m2 + 160m+ 8),

s2 = 2s1 − s0 = s0 − 2(864m2 + 160m+ 8)

...

s5 = 2s4 − s3 = s0 − 5 · (864m2 + 160m+ 8) = 1512m2 + 280m+ 16,

s6 = 2s5 − s4 = s0 − 6 · (864m2 + 160m+ 8) = 648m2 + 120m+ 8,

s7 = 3s6 − s5 = 432m2 + 80m+ 8,

s8 = 2s7 − s6 = 216m2 + 40m+ 8,

s9 = 2s8 − s7 = 8,

Pk = km+1 for k = 1, 2, . . . , 6, P7 = 3P6 −P5 = 3(6m+1)− (5m+1) = 13m+2,
P8 = 2P7 −P6 = 2(13m+2)− (6m+1) = 20m+3, P9 = 2P8 −P7 = 2(20m+3)−
(13m+ 2) = 27m+ 4. Then

s9
P9

=
8

27m+ 4
<

(18m+ 4)3

(18m+ 3)3
<

216m2 + 40m+ 8

20m+ 3
=

s8
P8

,

so that v = 8. By Equation 2.2 the Frobenius number in this case is

−(18m+ 2)3 + (18m+ 3)3(216m2 + 40m+ 8− 1) + (18m+ 4)3(27m+ 4− 1)

−min{(18m+ 3)3 · 8, (18m+ 4)3(20m+ 3)}

= −(18m+ 2)3 + (18m+ 3)3(216m2 + 40m+ 7) + (18m+ 4)3(27m+ 3)− (18m+ 3)3 · 8

= 1259712m5 + 1020600m4 + 332424m3 + 55404m2 + 4698m+ 157,

which equals f2(m) as desired.

Case n = 18m+ 3 for some integer m ≥ 1:

s
−1 = n3 = 5832m3 + 2916m2 + 486m+ 27,

s0 = 18n2 − 12n+ 8 = 5832m2 + 1728m+ 134,

s1 = (m+ 1)s0 − s
−1 = 4644m2 + 1376m+ 107 = s0 − (1188m2 + 352m+ 27),

s2 = 2s1 − s0 = s0 − 2(1188m2 + 352m+ 27)

s3 = 2s2 − s1 = s0 − 3 · (1188m2 + 352m+ 27) = 2268m2 + 672m+ 53,

s4 = 2s3 − s2 = s0 − 4 · (1188m2 + 352m+ 27) = 1080m2 + 320m+ 26,

s5 = 3s4 − s3 = 972m2 + 288m+ 25 = s4 − (108m2 + 32m+ 1),

s6 = 2s5 − s4 = 864m2 + 256m+ 24 = s4 − 2(108m2 + 32m+ 1),
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...

s13 = 2s12 − s11 = s4 − 9(108m2 + 32m+ 1) = 108m2 + 32m+ 17,

s14 = 2s13 − s12 = s4 − 10(108m2 + 32m+ 1) = 16,

so that by easy induction arguments, Pk = km + 1 for k = 1, 2, 3, 4, Pk = (5k −
16)m+ k − 3 for k = 5, 6, . . . , 14. Then

s14
P14

=
16

54m+ 11
<

(18m+ 5)3

(18m+ 4)3
<

108m2 + 32m+ 17

49m+ 10
=

s13
P13

,

so that v = 13. By Equation 2.2 the Frobenius number in this case is

−(18m+ 3)3 + (18m+ 4)3(108m2 + 32m+ 17− 1) + (18m+ 5)3(54m+ 11− 1)

−min{(18m+ 4)3 · 16, (18m+ 5)3(49m+ 10)}

= −(18m+ 3)3 + (18m+ 4)3(108m2 + 32m+ 16) + (18m+ 5)3(54m+ 10)− (18m+ 4)3 · 16

= 629856m5 + 921456m4 + 532656m3 + 153144m2 + 21812m+ 1223,

= f3(m).

Case n = 18m+ 4 for some integer m ≥ 1:

s
−1 = n3 = 5832m3 + 3888m2 + 864m+ 64,

s0 = 18n2 − 12n+ 8 = 5832m2 + 2376m+ 248,

s1 = (m+ 1)s0 − s
−1 = 4320m2 + 1760m+ 184,

s2 = 2s1 − s0 = 2808m2 + 1144m+ 120,

s3 = 2s2 − s1 = 1296m2 + 528m+ 56,

s4 = 3s3 − s2 = 1080m2 + 440m+ 48,

s5 = 2s4 − s3 = 864m2 + 352m+ 40,

s6 = 2s5 − s4 = 648m2 + 264m+ 32,

s7 = 2s6 − s5 = 432m2 + 176m+ 24,

s8 = 2s7 − s6 = 216m2 + 88m+ 16,

s9 = 2s8 − s7 = 8,

so that Pk = km+1 for k = 1, 2, 3, Pk = (4k−9)m+k−2 for k = 4, 5, . . . , 9. Then

s9
P9

=
8

27m+ 7
<

(18m+ 6)3

(18m+ 5)3
<

216m2 + 88m+ 16

23m+ 6
=

s8
P8

,

so that v = 8. By Equation 2.2 the Frobenius number in this case is

−(18m+ 4)3 + (18m+ 5)3(216m2 + 88m+ 16− 1) + (18m+ 6)3(27m+ 7− 1)

−min{(18m+ 5)3 · 8, (18m+ 6)3(23m+ 6)}

= −(18m+ 4)3 + (18m+ 5)3(216m2 + 88m+ 15) + (18m+ 6)3(27m+ 6)− (18m+ 5)3 · 8

= 1259712m5 + 1720440m4 + 946728m3 + 263412m2 + 37082m+ 2107

= f4(m).
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Case n = 18m+ 5 for some integer m ≥ 1:

s
−1 = n3 = 5832m3 + 4860m2 + 1350m+ 125,

s0 = 18n2 − 12n+ 8 = 5832m2 + 3024m+ 398,

s1 = (m+ 1)s0 − s
−1 = 3996m2 + 2072m+ 273,

s2 = 2s1 − s0 = 2160m2 + 1120m+ 148,

s3 = 2s2 − s1 = 324m2 + 168m+ 23,

s4 = 7s3 − s2 = 108m2 + 56m+ 13,

s5 = 3s4 − s3 = 16,

so that Pk = km + 1 for k = 1, 2, 3, P4 = 7P3 − P2 = 19m+ 6, P5 = 3P4 − P3 =
54m+ 17. Then

s5
P5

=
16

54m+ 17
<

(18m+ 7)3

(18m+ 6)3
<

108m2 + 56m+ 13

19m+ 6
=

s4
P4

,

so that v = 4. By Equation 2.2 the Frobenius number in this case is

−(18m+ 5)3 + (18m+ 6)3(108m2 + 56m+ 13− 1) + (18m+ 7)3(54m+ 17− 1)

−min{(18m+ 6)3 · 16, (18m+ 7)3(19m+ 6)}

= −(18m+ 5)3 + (18m+ 6)3(108m2 + 56m+ 12) + (18m+ 7)3(54m+ 16)− (18m+ 6)3 · 16

= 629856m5 + 1271376m4 + 968112m3 + 355752m2 + 63828m+ 4499

= f5(m).

Case n = 18m+ 6 for some integer m ≥ 1:

s
−1 = n3 = 5832m3 + 5832m2 + 1944m+ 216,

s0 = 18n2 − 12n+ 8 = 5832m2 + 3672m+ 584,

s1 = (m+ 1)s0 − s
−1 = 3672m2 + 2312m+ 368,

s2 = 2s1 − s0 = 1512m2 + 952m+ 152,

s3 = 3s2 − s1 = 864m2 + 544m+ 88,

s4 = 2s3 − s2 = 216m2 + 136m+ 24,

s5 = 4s4 − s3 = 8,

so that Pk = km+1 for k = 1, 2, P3 = 3P2−P1 = 5m+2, P4 = 2P3−P2 = 8m+3,
P5 = 4P4 − P3 = 27m+ 10. Then

s5
P5

=
8

27m+ 10
<

(18m+ 8)3

(18m+ 7)3
<

216m2 + 136m+ 24

8m+ 3
=

s4
P4

,

so that v = 4. By Equation 2.2 the Frobenius number in this case is

−(18m+ 6)3 + (18m+ 7)3(216m2 + 136m+ 24− 1) + (18m+ 8)3(27m+ 10− 1)

−min{(18m+ 7)3 · 8, (18m+ 8)3(8m+ 3)}

= −(18m+ 6)3 + (18m+ 7)3(216m2 + 136m+ 23) + (18m+ 8)3(27m+ 9)− (18m+ 7)3 · 8

= 1259712m5 + 2420280m4 + 1840968m3 + 693468m2 + 129322m+ 9537

= f6(m).
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Case n = 18m+ 7 for some integer m ≥ 2:

s
−1 = n3 = 5832m3 + 6804m2 + 2646m+ 343,

s0 = 18n2 − 12n+ 8 = 5832m2 + 4320m+ 806,

s1 = (m+ 1)s0 − s
−1 = 3348m2 + 2480m+ 463,

s2 = 2s1 − s0 = 864m2 + 640m+ 120,

s3 = 4s2 − s1 = 108m2 + 80m+ 17,

s4 = 8s3 − s2 = 16,

so that Pk = km+1 for k = 1, 2, P3 = 4P2−P1 = 7m+3, P4 = 8P3−P2 = 54m+23.
Then

s4
P4

=
16

54m+ 23
<

(18m+ 9)3

(18m+ 8)3
<

108m2 + 80m+ 17

8m+ 3
=

s3
P3

,

so that v = 3. By Equation 2.2 the Frobenius number in this case is

−(18m+ 7)3 + (18m+ 8)3(108m2 + 80m+ 17− 1) + (18m+ 9)3(54m+ 23− 1)

−min{(18m+ 8)3 · 16, (18m+ 9)3(8m+ 3)}

= −(18m+ 7)3 + (18m+ 8)3(108m2 + 80m+ 16) + (18m+ 9)3(54m+ 22)− (18m+ 8)3 · 16

= 629856m5 + 1621296m4 + 1590192m3 + 753624m2 + 173908m+ 15695

= f7(m).

Note that the “minimum” part forces m ≥ 2 for a clean formula.

Case n = 18m+ 8 for some integer m ≥ 4:

s
−1 = n3 = 5832m3 + 7776m2 + 3456m+ 512,

s0 = 18n2 − 12n+ 8 = 5832m2 + 4968m+ 1064,

s1 = (m+ 1)s0 − s
−1 = 3024m2 + 2576m+ 552,

s2 = 2s1 − s0 = 216m2 + 184m+ 40,

s3 = 14s2 − s1 = 8,

so that Pk = km+ 1 for k = 1, 2, P3 = 14P2 − P1 = 27m+ 13. Then

s3
P3

=
8

27m+ 13
<

(18m+ 10)3

(18m+ 9)3
<

216m2 + 184m+ 40

2m+ 1
=

s2
P2

,

so that v = 2. By Equation 2.2 the Frobenius number in this case is

−(18m+ 8)3 + (18m+ 9)3(216m2 + 184m+ 40− 1) + (18m+ 10)3(27m+ 13− 1)

−min{(18m+ 9)3 · 8, (18m+ 10)3(2m+ 1)}

= −(18m+ 8)3 + (18m+ 9)3(216m2 + 184m+ 39) + (18m+ 10)3(27m+ 12)− (18m+ 9)3 · 8

= 1259712m5 + 3120120m4 + 3061800m3 + 1488132m2 + 358074m+ 34087

= f8(m).

Note that the “minimum” part forces m ≥ 4 for a clean formula.

Case n = 18m+ 9 for some integer m ≥ 1:

s
−1 = n3 = 5832m3 + 8748m2 + 4374m+ 729,

s0 = 18n2 − 12n+ 8 = 5832m2 + 5616m+ 1358,
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s1 = (m+ 1)s0 − s
−1 = 2700m2 + 2600m+ 629,

s2 = 3s1 − s0 = 2268m2 + 2184m+ 529 = s1 − (432m2 + 416m+ 100),

s3 = 2s2 − s1 = s1 − 2(432m2 + 416m+ 100),

...

s6 = 2s5 − s4 = s1 − 5(432m2 + 416m+ 100) = 540m2 + 520m+ 129,

s7 = 2s6 − s5 = s1 − 6(432m2 + 416m+ 100) = 108m2 + 104m+ 29,

s8 = 5s7 − s6 = 16,

so that P1 = m+1, P2 = 3P1 − P0 = 3m+2, Pk = 2Pk−1 −Pk−2 = (2k− 1)m+ k
for k = 3, . . . , 7, P8 = 5P7 − P6 = 5(13m+ 7)− (11m+ 6) = 54m+ 29. As

s8
P8

=
16

54m+ 29
<

(18m+ 11)3

(18m+ 10)3
<

108m2 + 104m+ 29

13m+ 7
=

s7
P7

,

so that v = 7. By Equation 2.2 the Frobenius number in this case is

−(18m+ 9)3 + (18m+ 10)3(108m2 + 104m+ 29− 1) + (18m+ 11)3(54m+ 29− 1)

−min{(18m+ 10)3 · 16, (18m+ 11)3(13m+ 7)}

= −(18m+ 9)3 + (18m+ 10)3(108m2 + 104m+ 28) + (18m+ 11)3(54m+ 28)− (18m+ 10)3 · 16

= 629856m5 + 1971216m4 + 2398896m3 + 1429704m2 + 419252m+ 48539

= f9(m).

Case n = 18m+ 10 for some integer m ≥ 1:

s
−1 = n3 = 5832m3 + 9720m2 + 5400m+ 1000,

s0 = 18n2 − 12n+ 8 = 5832m2 + 6264m+ 1688,

s1 = (m+ 1)s0 − s
−1 = 2376m2 + 2552m+ 688,

s2 = 3s1 − s0 = 1296m2 + 1392m+ 376,

s3 = 2s2 − s1 = 216m2 + 232m+ 64,

s4 = 6s3 − s2 = 8,

so that P1 = m+1, P2 = 3m+2, P3 = 2P2−P1 = 5m+3. P4 = 6P3−P2 = 27m+16.
Then

s4
P4

=
8

27m+ 16
<

(18m+ 12)3

(18m+ 11)3
<

216m2 + 232m+ 64

5m+ 3
=

s3
P3

,

so that v = 3. By Equation 2.2 the Frobenius number in this case is

−(18m+ 10)3 + (18m+ 11)3(216m2 + 232m+ 64− 1) + (18m+ 12)3(27m+ 16− 1)

−min{(18m+ 11)3 · 8, (18m+ 12)3(5m+ 3)}

= −(18m+ 10)3 + (18m+ 11)3(216m2 + 232m+ 63) + (18m+ 12)3(27m+ 15)− (18m+ 11)3 · 8

= 1259712m5 + 3819960m4 + 4609224m3 + 2766636m2 + 826058m+ 98125

= f10(m).
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Case n = 18m + 11 for some integer m ≥ 1: Then Rødseth’s algorithm from
the first paragraph continues as:

s
−1 = n3 = 5832m3 + 10692m2 + 6534m+ 1331,

s0 = 18n2 − 12n+ 8 = 5832m2 + 6912m+ 2054,

s1 = (m+ 1)s0 − s
−1 = 2052m2 + 2432m+ 723,

s2 = 3s1 − s0 = 324m2 + 384m+ 115,

s3 = 7s2 − s1 = 216m2 + 256m+ 82,

s4 = 2s3 − s2 = 108m2 + 128m+ 49,

s5 = 2s4 − s3 = 16,

so that P1 = m + 1, P2 = 3P1 − P0 = 3m + 2, P3 = 7P2 − P1 = 20m + 13,
P4 = 2P3 − P2 = 37m+ 24, P5 = 2P4 − P3 = 54m+ 35, and

s5
P5

=
16

54m+ 35
<

(18m+ 13)3

(18m+ 12)3
<

108m2 + 128m+ 49

37m+ 24
=

s4
P4

,

so that v = 4. By Equation 2.2 the Frobenius number in this case is

−(18m+ 11)3 + (18m+ 12)3(108m2 + 128m+ 49− 1) + (18m+ 13)3(54m+ 35− 1)

−min{(18m+ 12)3 · 16, (18m+ 13)3(37m+ 24)}

= −(18m+ 11)3 + (18m+ 12)3(108m2 + 128m+ 48) + (18m+ 13)3(54m+ 34)− (18m+ 12)3 · 16

= 629856m5 + 2321136m4 + 3394224m3 + 2466936m2 + 892404m+ 128663

= f11(m).

Case n = 18m+ 12 for some integer m ≥ 1:

s
−1 = n3 = 5832m3 + 11664m2 + 7776m+ 1728,

s0 = 18n2 − 12n+ 8 = 5832m2 + 7560m+ 2456,

s1 = (m+ 1)s0 − s
−1 = 1728m2 + 2240m+ 728,

s2 = 4s1 − s0 = 1080m2 + 1400m+ 456,

s3 = 2s2 − s1 = 432m2 + 560m+ 184,

s4 = 3s3 − s2 = 216m2 + 280m+ 96,

s5 = 2s4 − s3 = 8,

so that P1 = m + 1, P2 = 4P1 − P0 = 4m + 3, P3 = 2P2 − P1 = 7m + 5,
P4 = 3P3 − P2 = 17m+ 12. P5 = 2P4 − P3 = 27m+ 19. Then

s5
P5

=
8

27m+ 19
<

(18m+ 14)3

(18m+ 13)3
<

216m2 + 280m+ 96

17m+ 12
=

s4
P4

,

so that v = 4. By Equation 2.2 the Frobenius number in this case is

−(18m+ 12)3 + (18m+ 13)3(216m2 + 280m+ 96− 1) + (18m+ 14)3(27m+ 19− 1)

−min{(18m+ 13)3 · 8, (18m+ 14)3(17m+ 12)}

= −(18m+ 12)3 + (18m+ 13)3(216m2 + 280m+ 95) + (18m+ 14)3(27m+ 18)− (18m+ 13)3 · 8

= 1259712m5 + 4519800m4 + 6483240m3 + 4648212m2 + 1665946m+ 238803

= f12(m).
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Case n = 18m+ 13 for some integer m ≥ 1:

s
−1 = n3 = 5832m3 + 12636m2 + 9126m+ 2197,

s0 = 18n2 − 12n+ 8 = 5832m2 + 8208m+ 2894,

s1 = (m+ 1)s0 − s
−1 = 1404m2 + 1976m+ 697,

s2 = 5s1 − s0 = 1188m2 + 1672m+ 591,

s3 = 2s2 − s1 = 972m2 + 1368m+ 485 = s2 − (216m2 + 304m+ 106),

...

s6 = 2s5 − s4 = s2 − 4(216m2 + 304m+ 106) = 324m2 + 456m+ 167,

s7 = 2s6 − s5 = s2 − 5(216m2 + 304m+ 106) = 108m2 + 152m+ 61,

s8 = 3s7 − s6 = 16,

so that P1 = m + 1, Pk = (4k − 3)m + 3k − 2 for k = 2, . . . , 7, P8 = 3P7 − P6 =
3(25m+ 19)− (21m+ 16) = 54m+ 41, and

s8
P8

=
16

54m+ 41
<

(18m+ 15)3

(18m+ 14)3
<

108m2 + 152m+ 61

25m+ 19
=

s7
P7

,

so that v = 7. By Equation 2.2 the Frobenius number in this case is

−(18m+ 13)3 + (18m+ 14)3(108m2 + 152m+ 61− 1) + (18m+ 15)3(54m+ 41− 1)

−min{(18m+ 14)3 · 16, (18m+ 15)3(25m+ 19)}

= −(18m+ 13)3 + (18m+ 14)3(108m2 + 152m+ 60) + (18m+ 15)3(54m+ 40)− (18m+ 14)3 · 16

= 629856m5 + 2671056m4 + 4482864m3 + 3730536m2 + 1541908m+ 253539

= f13(m).

Case n = 18m+ 14 for some integer m ≥ 1:

s
−1 = n3 = 5832m3 + 13608m2 + 10584m+ 2744,

s0 = 18n2 − 12n+ 8 = 5832m2 + 8856m+ 3368,

s1 = (m+ 1)s0 − s
−1 = 1080m2 + 1640m+ 624,

s2 = 6s1 − s0 = 648m2 + 984m+ 376,

s3 = 2s2 − s1 = 216m2 + 328m+ 128,

s4 = 3s3 − s2 = 8,

so that P1 = m + 1, P2 = 6P1 − P0 = 6m + 5, P3 = 2P2 − P1 = 11m + 9,
P4 = 3P3 − P2 = 27m+ 22. Then

s4
P4

=
8

27m+ 22
<

(18m+ 16)3

(18m+ 15)3
<

216m2 + 328m+ 128

11m+ 9
=

s3
P3

,

so that v = 3. By Equation 2.2 the Frobenius number in this case is

−(18m+ 14)3 + (18m+ 15)3(216m2 + 328m+ 128− 1) + (18m+ 16)3(27m+ 22− 1)

−min{(18m+ 15)3 · 8, (18m+ 16)3(11m+ 9)}

= −(18m+ 14)3 + (18m+ 15)3(216m2 + 328m+ 127) + (18m+ 16)3(27m+ 21)− (18m+ 15)3 · 8

= 1259712m5 + 5219640m4 + 8637192m3 + 7135452m2 + 2943162m+ 484897
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= f14(m).

Case n = 18m+ 15 for some integer m ≥ 1:

s
−1 = n3 = 5832m3 + 14580m2 + 12150m+ 3375,

s0 = 18n2 − 12n+ 8 = 5832m2 + 9504m+ 3878,

s1 = (m+ 1)s0 − s
−1 = 756m2 + 1232m+ 503,

s2 = 8s1 − s0 = 216m2 + 352m+ 146,

s3 = 4s2 − s1 = 108m2 + 176m+ 81,

s4 = 2s3 − s2 = 16,

so that P1 = m + 1, P2 = 8P1 − P0 = 8m + 7, P3 = 4P2 − P1 = 31m + 27,
P4 = 2P3 − P2 = 54m+ 47, and

s4
P4

=
16

54m+ 47
<

(18m+ 17)3

(18m+ 16)3
<

108m2 + 176m+ 81

31m+ 27
=

s3
P3

,

so that v = 3. By Equation 2.2 the Frobenius number in this case is

−(18m+ 15)3 + (18m+ 16)3(108m2 + 176m+ 81− 1) + (18m+ 17)3(54m+ 47− 1)

−min{(18m+ 16)3 · 16, (18m+ 17)3(31m+ 27)}

= −(18m+ 15)3 + (18m+ 16)3(108m2 + 176m+ 80) + (18m+ 17)3(54m+ 46)− (18m+ 16)3 · 16

= 629856m5 + 3020976m4 + 5758128m3 + 5458968m2 + 2576660m+ 484767

= f15(m).

Case n = 18m+ 16 for some integer m ≥ 1:

s
−1 = n3 = 5832m3 + 15552m2 + 13824m+ 4096,

s0 = 18n2 − 12n+ 8 = 5832m2 + 10152m+ 4424,

s1 = (m+ 1)s0 − s
−1 = 432m2 + 752m+ 328,

s2 = 14s1 − s0 = 216m2 + 376m+ 168,

s3 = 2s2 − s1 = 8,

so that P1 = m+1, P2 = 14P1−P0 = 14m+13, P3 = 2P2 −P1 = 27m+25. Then

s3
P3

=
8

27m+ 25
<

(18m+ 18)3

(18m+ 17)3
<

216m2 + 376m+ 168

14m+ 13
=

s2
P2

,

so that v = 2. By Equation 2.2 the Frobenius number in this case is

−(18m+ 16)3 + (18m+ 17)3(216m2 + 376m+ 168− 1) + (18m+ 18)3(27m+ 25− 1)

−min{(18m+ 17)3 · 8, (18m+ 18)3(14m+ 13)}

= −(18m+ 16)3 + (18m+ 17)3(216m2 + 376m+ 167) + (18m+ 18)3(27m+ 24)− (18m+ 17)3 · 8

= 1259712m5 + 5919480m4 + 11117736m3 + 10433124m2 + 4892186m+ 917039

= f16(m).

Case n = 18m+ 17 for some integer m ≥ 15:

s
−1 = n3 = 5832m3 + 16524m2 + 15606m+ 4913,
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s0 = 18n2 − 12n+ 8 = 5832m2 + 10800m+ 5006,

s1 = (m+ 1)s0 − s
−1 = 108m2 + 200m+ 93,

s2 = 54s1 − s0 = 16,

so that P1 = m+ 1, P2 = 54P1 − P0 = 54m+ 53, and

s2
P2

=
16

54m+ 53
<

(18m+ 19)3

(18m+ 18)3
<

108m2 + 200m+ 93

m+ 1
=

s1
P1

,

so that v = 1. By Equation 2.2 the Frobenius number in this case is

−(18m+ 17)3 + (18m+ 18)3(108m2 + 200m+ 93− 1) + (18m+ 19)3(54m+ 53− 1)

−min{(18m+ 18)3 · 16, (18m+ 19)3(m+ 1)}

= −(18m+ 17)3 + (18m+ 18)3(108m2 + 200m+ 92) + (18m+ 19)3(54m+ 52)− (18m+ 18)3 · 16

(because m ≥ 15)

= 629856m5 + 3370896m4 + 7126704m3 + 7455240m2 + 3864564m+ 794987

= f17(m).

This finishes the proof of Theorem 4.1.
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