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FAST SPECTRUM ESTIMATION OF SOME KERNEL MATRICES*

MIKHAIL LEPILOVT

Abstract. In data science, individual observations are often assumed to come independently
from an underlying probability space. Kernel matrices formed from large sets of such observations
arise frequently, for example during classification tasks. It is desirable to know the eigenvalue decay
properties of these matrices without explicitly forming them, such as when determining if a low-
rank approximation is feasible. In this work, we introduce a new eigenvalue quantile estimation
framework for some kernel matrices. This framework gives meaningful bounds for all the eigenvalues
of a kernel matrix while avoiding the cost of constructing the full matrix. The kernel matrices under
consideration come from a kernel with quick decay away from the diagonal applied to uniformly-
distributed sets of points in Euclidean space of any dimension. We prove the efficacy of this framework
given certain bounds on the kernel function, and we provide empirical evidence for its accuracy. In the
process, we also prove a very general interlacing-type theorem for finite sets of numbers. Additionally,
we indicate an application of this framework to the study of the intrinsic dimension of data, as well
as several other directions in which to generalize this work.
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1. Introduction.

Background. Kernel matrices that result from applying a positive-definite func-
tion pairwise to a finite set of points X C R? arise in several areas of computational
mathematics such as image processing and machine learning. In the latter field es-
pecially, common methods involve performing expensive computations with a kernel
matrix, such as inverting it or finding its eigenvalues [18, 19]. The kernel matrix
involved, however, may be of a prohibitively large size to even form, let alone to do
computations with. On the other hand, if the matrix has quick eigenvalue decay rel-
ative to its norm, then we may be able to efficiently carry out computations on its
low-rank approximation instead. A good overview of such computations and their
complexity is found in [6]. Hence, it is useful to study a priori the eigenvalue decay
of a kernel matrix. Given the n data points with which the kernel matrix is formed,
we would like to find ways to estimate all of its eigenvalues faster than by having to
form the matrix first. That is, we would like to do so in a sub-quadratic number of
operations relative to n.

We consider a setting common in data science, which is when the points in X
are assumed to be independent and identically-distributed, coming from some latent
distribution. In the past, the study of eigenvalue decay of such kernel matrices often
focused on asymptotic eigenvalue behavior as the number of distribution samples in X
was taken to infinity, after making some appropriate assumptions on the distribution
and kernel function involved [15, 4]. However, as the examples in [4] suggest, these
bounds rely on the kernel function having its truncated eigendecomposition (in some
appropriate function space) readily available. Furthermore, it is unclear exactly how
many terms to keep when computing and truncating such an eigendecomposition
in order to obtain an eigenvalue decay bound within some tolerance. Thus, it is
impractical to use such ideas for our purposes of estimating eigenvalue decay of a
given kernel matrix.
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2 KERNEL MATRIX SPECTRUM ESTIMATION

These difficulties are sidestepped when empirical methods are used to obtain
bounds on eigenvalues, such as matrix sketching. However, most sketching techniques
typically require not only forming the kernel matrix but also finding matrix-vector
products with sets of specially-crafted vectors. For some examples and an overview,
see [22, 20]. Such techniques applied to an n X n matrix, therefore, would require a
number of operations that scales at least quadratically in n, so most sketching ap-
proaches do not provide a way to achieve our goal. One exception is the class of
techniques known as Nystrom methods, which can be thought of as matrix sketching
methods that do not require forming the entire kernel matrix. In Nystrom methods,
a random subsample of the points in X, and hence of the kernel matrix, is used to
obtain a low-rank decomposition of the full matrix. The spectrum of this randomly-
subsampled matrix is shown to be correlated pointwise with the first few eigenvalues
of the full matrix [21]. Various strategies for sampling the matrix and obtaining theo-
retical pointwise accuracy guarantees for this correlation have been implemented over
the years. Such guarantees depend on performing additional computations with the
data points informing the choice of samples; see, for example, [8]. An in-depth empir-
ical exploration of such guarantees, and especially their limitations, is given in [12].
However, since the goal of such methods is to find the best low-rank approximation,
and not to find whether or not a good such approximation exists, these accuracy
guarantees only apply to give eigenvalue estimates for the first few eigenvalues. Fur-
thermore, in practice, the low-cost “naive” Nystrom method of [21] actually does not
work to give a subsampled matrix with similar eigenvalues if the matrix has high
numerical rank; see Figure 1.1 for an illustration of this phenomenon.

Even more recently, related work comes from approximating graph spectra in
subquadratic time, such as in [2, 5]. In this approach, the kernel matrix can be
regarded as the Laplacian of a particular weighted complete graph. Specifically, each
vertex corresponds to one point, and each edge has weight equal to the kernel evaluated
at the points corresponding to the vertices that the edge connects. Methods based on
this are different from Nystrom methods and instead give bounds in the Wasserstein-
1 metric, often referred to as the “earth-mover distance.” From this, however, it is
difficult to obtain pointwise estimates of the matrix spectrum. The reference [2] does
contain such estimates for the first few eigenvalues but not for the later eigenvalues.

Finally, something close to being fit for our purpose may be found in [3]. This is
a result for general symmetric matrices that, in its basic form, gives additive bounds
unrelated to the magnitude of each eigenvalue for the later eigenvalues. This makes
controlling errors difficult for the later eigenvalues, and it prevents us from using the
approach if the numerical rank of the matrix is not already low.

Hence, to obtain accurate pointwise estimates for all the eigenvalues of a given
kernel matrix in subquadratic time, we must find a new empirical approach that
avoids the issues of the methods above. To do so, we first note that all of the methods
we mention so far use no more information than just the fact that the matrix is
symmetric. Thus, using more information about the distribution underlying X, as
well as the kernel involved in forming the matrix, may enable us to find a better
approximation for its spectrum.

Our contribution. In this work, we use this information to design a fundamen-
tally new eigenvalue estimation technique based on finding bounds for the expected
k quantiles of the eigenvalue distribution of a kernel matrix, for the case that k < n.
This is done, in turn, by matching the moments of this eigenvalue distribution with
that of a smaller, £ x k matrix formed specifically for the purpose. Empirically, it
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Fic. 1.1. The first 100 eigenvalues of the kernel matriz (blue) formed when X consists of 512
points taken from the standard uniform distribution in one dimension, as well as those of its “naive”

Nystrém approzimation (red) with 32 points. Here, the kernel used is k(x,y) = exp(—10(z — y)2)
(top figure), k(z,y) = exp(—100(x—y)2) (middle figure), and k(z,y) = exp(—10000(x—y)?) (bottom
figure). It is evident that, in the top figure, the eigenvalue decay of the subsampled matriz corresponds
well with the eigenvalue decay of the full matriz, but in the center and especially bottom figures, this
is no longer the case.

This indicates that the Nystrom method only works to give an estimate of
numerical rank if we know a priori that it is low for our given kernel matriz, as in the top figure.
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4 KERNEL MATRIX SPECTRUM ESTIMATION

turns out that this technique works precisely when the kernel in question has quick
decay away from the diagonal, which corresponds to the case that the matrix is of
high numerical rank. This complements the existing methods mentioned above, which
do not give good accuracy guarantees in such cases (again, see Figure 1.1). Although
it is true that in the case of a one-dimensional kernel, such matrices may be approx-
imated by banded matrices, this is no longer the case when X is in Euclidean space
of moderate or high dimension. Our framework, on the other hand, still applies even
in the moderate- or high-dimensional setting.

This new framework requires O(mk?) computations, where m is a constant that
depends on the desired approximation accuracy. Thus, for certain distributions giving
rise to X and kernels used to compute A, our new framework allows for the only
subquadratic method to find bounds on the later eigenvalues of the resulting kernel
matrix, after a preprocessing step that does not depend on the matrix or kernel. In
addition, since this is an entirely new approach, it provides a natural set of questions
for further study that could allow subquadratic eigenvalue estimates for wider classes
of kernel matrices. Along the way, we also show a very general result concerning the
interlacing of sets of real numbers which, to our knowledge, has never been shown
before. Finally, we propose an application of this work to the problem of finding the
so-called intrinsic dimension of a dataset.

The rest of the paper is structured as follows: in Section 2, we detail our ap-
proach. In the process, we prove several new results that show its efficacy in kernel
matrix eigenvalue quantile estimation. Among these results is the aforementioned
new, general interlacing result about finite sets of real numbers. In Section 3, we
give some numerical experiments showing the strengths and limitations of our new
framework. Finally, in Section 4, we pose a number of questions for further study
that could improve the framework. We also suggest an application to the problem of
dimension reduction in data science.

Throughout the paper, we use the following notation. Let d,n € N, and let
X C R? with |X| = n. Let x : R? x R — R be a symmetric, positive-definite
function. Fix an indexing X = {z1,...,z,}. By (X, X), we mean the kernel matrix
A € R™™ with entries A;; = k(x;,x;). For a symmetrix matrix A € R"*" and some
1 < j <mn, we denote by o;(A) the jth largest eigenvalue of A. Finally, for a,b € R
with a < b, we denote by Ula, b] the uniform distribution on the interval [a, b].

2. Theoretical results. Fix X and A as above. We will assume throughout
the paper that each z; ~ UJ0, 1], but we will comment later on how we may relax this
assumption to obtain more general analogs of our main ideas. We concern ourselves
with finding bounds for the eigenvalues of A.

We do so by finding another kernel matrix B € R¥**_ for k < n, formed using k
points sampled from among the x;s. We wish for the k eigenvalues of B to then give
bounds for the k& quantiles of the eigenvalue distribution of A in the following way.
Without loss of generality, we may assume k|n. We wish for B to have the property
that

(2'1) U[%'\—l(B) > JJ(A) > J’—%]_H(B),

for 1 < j <n, where we define “o¢(B) = 00” and “ox41(B) = 0.” In other words, we
wish for each n/k consecutive eigenvalues, ordered of A to be “sandwiched” between
two of the k eigenvalues of B, which we may compute in O(k?) time [13]. We may
look ahead to Figure 2.1 for a picture of this, but we first state our motivation. The

reason we wish to find another matrix B using a subsample of the original points,
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MIKHAIL LEPILOV 5

heuristically, is to preserve information about the geometry of the distribution that
gives rise to the z;s. An implicit assumption is that n is so large compared to k that
picking k of the x;s is the same thing as drawing from the original distribution, so
that B contains some information about the geometry of the points forming A.

2.1. Interlacing property of sets of real numbers. We may expect to get
something like the bounds in (2.1) if we match each of the k moments of the empirical
spectral distributions of A and B, which are defined as the discrete uniform distri-
butions A = {01(A),...,0,(4)} and B = {01(B),...,01(B)}, respectively. This is
because of the usual notion that the moments of a distribution convey its “shape.” In
the case of the discrete uniform distribution B, we know that such shape information
is contained entirely in its first k& moments, since B contains only k& points. Hence,
we may informally think of matching each of the & moments of A and B as the best
we can do in terms of estimating quantiles. Formally, we have the proposition below,
which is a very general property of sets of real numbers.

Note that, for convenience of notation, we assume henceforth that all the eigen-
values of A and B are distinct. In practice, this assumption holds if the underlying
distribution of X is continuous and the kernel is strictly decreasing away from the
diagonal. However, the following proposition and corollary can be easily modified to
hold even in the case of repeated eigenvalues.

PROPOSITION 2.1. Let S,T C Rxq with |S| = n, |T| = k, and k|n. Denote
by a; and b; the ith and jth largest elements of S and T, respectively, and suppose
S = Ele %" forallr =1,... k. Then

braxy o1 <45 S bpakyyy

for all j = 1,...,n, where we define by = 0 and by41 = co. (See Figure 2.1 for an
illustration of this.)

04 (g e
[ ]

) [ ]

:% 20 A

50 [ ]

< ° °

= w04 —_—
———

Index of element of S, T (sorted by magnitude)

Fi1G. 2.1. The sets S = {1,2,3,4,5,7,9,12,13,14,22,23,29, 30,31} (blue dots) and T (solid
red dashes), where T is picked such that 372, al /15 = S5 br /5 for v = 1,...,5. Hence, T
is approzimately {1.51216,6.52312,9.54601, 20.5897,30.1624}. Proposition 2.1 shows, for example,
that bz < a1g,a11,a12 < bs. This is illustrated with the blue arrows above.

Proof. Consider the discrete uniform probability distributions on S and T, with
the former having cumulative distribution function Fg. Then denoting by pu; and

This manuscript is for review purposes only.
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6 KERNEL MATRIX SPECTRUM ESTIMATION

v; the ith moments of these distributions on S and T for ¢ = 0, ..., k, respectively,
our assumptions are equivalent to requiring that pu; = v; for each ¢ = 1,...,k, and
therefore for each i € N. The statement follows as a quick corollary to some classical
results on the bounds for Fg in terms of its moments, which we reproduce here.

Following the notation and presentation of [1]—in particular, note the relation-
ships in Equations 1.3 and 1.4 of Chapter 1—we construct the set of polynomials
Py, ..., P, by the explicit formulas Py = 1 and

Ho M1 - Hj
S 5 R RN
1 ) : :
P; = :
D;_1D;
g-1 Hjoctr H2j-1
1 x PRI "E]
for j=1,...,k, where
Mo M1 ot My
L A
D;=1|. . .
Hio Hgi+1 o o H2j5
for j = 0,...,k. These polynomials satisfy a number of properties, but here we note
only the following: if we write the product P, P; as (P, P;)(x) = ?i%(Pi) des(Fy) cijaxt

for some coefficients ¢; ;;, then

deg(P;) deg(P;))

E Cij it = 0.

=0

Since v; = p; for all ¢ and because T has the discrete uniform distribution, this is
equivalent to

(BiP;)(bi)

k = 5173‘, or

M- I

(2.2) (P;P;)(by) = kb, ;,

=1

where ¢;_; is the Kronecker delta. (In other words, in our case, (P;);=o,... k iS a sequence
of polynomials orthogonal with respect to the average of the evaluation functionals
at the bjs for j = 1,...,k.) Furthermore, following [11], we construct the “empirical
Christoffel function”

o
==
Zi:o Pi2

Now, let z; for « = 1,...,k be the roots of Py. Using the function A, the authors in
[11] note the following bounds on Fg:

Ak

k i
1= Mxj) < Fs(z:) <Y Ay).
Jj=t j=1

This manuscript is for review purposes only.
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By our definition of Fg, the proposition therefore follows if we show that (1) the b;’s
are precisely the roots x; of Py, and (2) M(x;) = 1/k foreach i =1,..., k. To see (1),
we note that since p; = v; for all i € N, for each b; we have

k k k
Al WZhn - T
1 (%) =1 by (%) 21:1 b7 (E) 21:1 bl *
Py(bi) = ——= : '
/Dy—1Dy, N L . -
(B) 2 0 () o of () iy b
1 b by
ORE 0 O Tn s w o
1 1 ) 1 1
G o L N
VDD .k— .k— .k— Ak—
V L Ll A S

Now, note that by fact (1 )7 we see that (2) is equivalent to the condition that
ZZ o P2(b;) = k for each i = 1,..., k. Define the matrix C by

B> (% ;T )= Hsiav (3)Th,

(Hfmien (Bsicd st || (st (Bsd - ()=, 3

=L || (B o™ (Bt () S | (D) =™ () Sk (1) by o7

i
C; = ! b J 4 1 bm b, .
J,m 3 E 7 )

. Opa
OSRGOS B (%)Z_f“:”l'” (Bt i”

(B Shoa o ()b ot (B, apt ||(D) S (R Bt (R 2t

then (2) follows once we show that C; ; = k for j = 1,...,k. To see this, we note that
C = AT A, where

(F)far (F)=ian (+) =iy (4111
(F)=tb (#) Shoyvf (#) =ty vf
(F) ool 7 (F) ohs (F) by o™
A, = 1 bm bin
7,m 1 1 o 1 ko /2
%)=t (%) Xzt %) Zi=1 b _
Faon W R @ @zt st

(1) i (1) S of o () sy o || () st () kel

On the other hand, we see that

(AAT);. Z P;(b
= kcsj,m,

with the last equality by Equation (2.2). Hence, AAT = kI, and therefore we have
C = AT A = kI . Thus, Cj;;=kforj=1,...,k, as desired. 0

Since the sum of the rth powers of all the eigenvalues of a matrix is equivalent to the
trace of its rth power, Proposition 2.1 implies the following statement:

This manuscript is for review purposes only.
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8 KERNEL MATRIX SPECTRUM ESTIMATION

COROLLARY 2.2. Suppose A € R™™"™ and B € RF*F have distinct, nonnegative
eigenvalues, and suppose we have tr (B"/k) = tr(A"/n) for 1 < r < k. Then
J(%]_l(B) > 0;(A) > J(%]_i_l(B) for 1 < j < n, where we define “og(B) = c0”
and “O'k+1(B) =0.”

Proof. Defining the empirical spectral distributions A = {o1(4) ...,0,(A)} and
B = {01(B),...,01(B)} as above, apply Proposition 2.1 while setting S = A and
T = B. The result follows since tr(A") = Y7 (0:(A))" and tr(B*) = Z?Zl(aj(B))s
for 1 <r <mnand 1 < s <k, which follows, in turn, because A and B are positive-
definite. O

2.2. Matching traces in expectation. Hence, given A, finding B such that
Equation (2.1) holds requires us to match the traces of the rth powers of A and B
for r =1,...,k. Since A is a random matrix, we will concentrate on understanding
the expected traces of A” and B”. Here, we assume that n is large enough such that
0;(A) does not vary very much from its expected value in relative terms. However,
since k is small, we would need to form B repeatedly m times, where m depends on k
and the desired approximation accuracy, and empirically compute the average value
of 0;(B). These 0;(B)s would then be used in the way of (2.1).

While we do not know of a way of matching these expected traces exactly, in the
next proposition we show a way of matching them approximately if (1) « is “close to
the Kronecker delta”; that is, if x has very quick decay away from the diagonal; and
(2) we have access to a special probability distribution = on R¥. More precisely, &
must satisfy the condition of Equation (2.4) below for some € > 0 to give the relative
moment bound (2.5), and = must satisfy (2.3). See Figure 2.2 for an illustration of
the condition on k.

Distance from diagonal

1 1

Distance from diagonal

Distance from diagonal Distance from diagonal

Fic. 2.2. The condition in (2.4): the left figure is a heatmap of the Kronecker delta on the region
[0,1] x [0, 1], and the right figure is a heatmap of the Gaussian kernel k1 (z,y) = e=1000(z=1)? o the
same region. Informally, we may think of the integral of the Kronecker delta over the blue subregion
[0, 5] X [0, s] (the length of the red diagonal) as s times its integral over the entire region [0, 1] x [0, 1]
(the length of the entire diagonal). Of course, both integrals are formally 0. Similarly, we can
see that the integral of k1 over [0,s] X [0, s] is approximately s times its integral over [0,1] x [0,1].
This is contrasted with the case, for example, of the Gaussian kernel ka(z,y) = e’@’y)z/loooo,
whose integral over [0, s] x [0, s] is approzimately s2 times its integral over [0,1] X [0,1]. Thus, the
condition (2.4) makes precise the way in which k1 does and k2 does not have fast decay away from
the diagonal.

In general, as we see in [14], approximate moment matching for a guarantee of

pointwise closeness of two cumulative distribution functions may require prohibitively
close tolerances. This is likely the main theoretical reason for the requirement that

This manuscript is for review purposes only.
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MIKHAIL LEPILOV 9

decays quickly away from the diagonal. We will see in Section 3 how quick the decay
has to be in practice. The recent work of [16, Theorem 1] suggests that we may be,
however, be able to bound our approximate quantile estimates in the Wasserstein-1
metric by a perturbative bound from the “true” quantile estimate.

Once we have (1) and (2), we use the following strategy for picking B such that
E(tr(A")/n) = E(tr(B")/k) for all r = 1,... k:

1. we pick a set Y of some points y1,...,yr at random from X;

2. we scale each y; by a random number z;, where the z;s are picked from a
distribution = such that the random vector z = (z1,...,2;) satisfies (2.3);
and

3. we set B =k(Y,Y) and find its eigenvalues.

We then repeat these steps m times to find the average o;(B) for j =1,...,k.

In order to prove that this works, for technical reasons, we need to fix notation
for a walk on the complete graph on n vertices K,. Namely, we identify a function
m:{0,...,r} = {1,...,n} with a walk of length r starting (and ending) at a vertex
m of the complete graph K,,, where the value of 7(4) is the index of the vertex of K,
visited at the ith step. (In particular, note that since 7 is a walk, 7(0) = «(r) = m.)
We denote by |r| the cardinality of the image of 7. Then we have the following
proposition:

PROPOSITION 2.3. Let d,k,n € N with k | n. Suppose z = (z1,...,2k) is a vector
in R* with distribution Z such that

P(z; #2z;) =0 for all 1<4,j <k, and
B ([lieo =) = £

[Cl+1

(2.3)

for all nontrivial subsets C C {1,...,n} of cardinality at most k — 1. Suppose that
k : RYxR? = R is a positive-definite function such that, for some t € (0,1) and
any walk 7 with |7| =1 on K,,
1
f[oﬁ]z Hizl K/(xﬂ'(ifl)7 xﬂ‘(’i))dxﬂ'
7
f[o,l]l Hi:1 K’(Iﬂ'(i—l)7 xw(i))dxw

for all s € [t,1]. Define x; ~ U[0,1] and y; ~ (1/2;)Y/4U[0,1] for 1 < i < n and
1<j<k;defineY ={y1,...,yx}; and set A = k(X,X) and B =x(Y,Y). Then

E (tr (B"/k))
—e< E (tr (A7/n)) <l+e

(2.4) =s+e,

(2.5) 1

forr=1,... k.
Proof. First, note that

(A )mm = > > [ Anti=1)=ti)s

=1 m =1
where the inner sum ranges over all walks 7 of length r that visit [ distinct vertices
on the complete graph K, , starting at the vertex labeled m. Denote the set of all
such walks, starting at any vertex, by W}/ (K,). This bookkeeping of walks will be
important for our argument to follow. Similarly, we have

(B )mm =3 _ > T Beot-1yw»

=1 ¢ i=1

This manuscript is for review purposes only.
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10 KERNEL MATRIX SPECTRUM ESTIMATION

where the inner sum ranges over all walks v, of length r that visit [ distinct vertices
on the complete graph K}, starting at the vertex labeled m. Again, denote the set of
all such walks, starting at any vertex, by W} (K}).

Now, note that by linearity of expectation,

E (tI‘(Ar)) = Z E ((Ar)mm)

m=1

SE(Y Y [T

m=1 l17r€WTK)11

—Z > | <}:[1Aw<i1>w<i>>-

=1 7eW/ (K

By the definition of expectation and the variables A,;;, for each 7 € W[ (K,,), we have

E (HAw(i—l)Tr(i)> / HAW(Z (i)
i=1 X

Sx =1

:/ Hﬂ(xw(i—m,xw(i))
XS j=1

= /Rl H“(%@71)7xvr(z‘))fw(Xsw)dXsw

l b Tr d b)

where S is the set of vertices visited on the walk 7 and f, is the probability density
function of the joint distribution of the random variable xs = (Tx(1),---»Tr(r))-
Similarly, for ¢ € W[ (K}), we have

E <H Bw(i—n,w(i)) = /Rk /Rl HFé(yqp(i—l),yqp(i))gzp(}’su,)d}’z,swdz
i=1 3
-] Hn ot o) o (B (vs, ) Tac(Fy )y z s, dz

:/Rk/ Hﬁ(yw(iq),yw(i)) H zjdys, dz

Hjes [0,1/25] i=1 JESy
/ / Hff Yo(i-1) Yu(») 21y, dz,
RF J[0,1/21] ;2

where Fy : R! — R! is the projection onto the indices Sy of the function defined
by F(x) = (1/Z1,...,1/Z;) - x, restricted to the indices Sy. Note that the second
equality follows from the change-of-variables formula for probability density functions
applied to the variable y = (yy(1),- - -, ¥y()), and the third equality follows from the
definition of F' and the fact that f, = 1 for every v. Finally, the fourth equality
follows from the fact that P(Z; # Z;) =0 for all 1 <4¢,j < k.

This manuscript is for review purposes only.
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Hence, we see that

E(tr(B")) 21 ZdzEW[(Kk) Jer f[O,l/zl]’ [Ti1 5 yuii-1) Yo 21 dys, dz
E(tr(Ar)) E;:1 Zwer’"(Kn) f[o@]l H;:l ’{(xﬂ(ifl)’ mTr(i))dX&r
k
21 % 2wy (K.) Jar S0,y Tz K-y, Yn(i)21dys, dz
B erzl Zwer’“(Kn) f[o@]l szl “(xﬂ(i—1)7 xﬂ(i))dxsﬂ

)

where the second equality follows from the fact that, for every walk of length r with
1 < r < k visiting [ distinct vertices on K, there are (7)/(’;) such walks on K,,.
Then, by our assumption on « in Equation (2.4),

k n
k (1—¢) (Z;:l % Zﬂ.gw;(Kn) f[o)l]z [Tzt £(Ynii—1), Yn (i) )dys, <ﬁ E%;))
(1 - 6)7 = T T
n i1 ZweW;"(Kn) f[o,l]l [Lici p(@riio1), 2x(i))dxs,

k
1—e) > % D mewy (K f[O,l]l ITi—1 6Un(i-1) Yn(0) )Y, Jor 21 da
2;21 Zwer’“(Kn) f[og]l szl ’%(xﬂ(i—l)’ xﬂ(i))dxsw

k
E;:l ZweW[(Kn) % ka 12;16 f[0,1]l H;l ’f(yrr(iflﬁ yw(i))zidyswdz
- Y1 ZwEW{(Kn) f[m]l [licy £(@ri-1), Tn(i) ) dXs,

k
Y1 Dmewr (K,) % e Jio,1 20y Hiza 5(mio), Yr(n)21dys. dz
2o ZWEW["(Kn) f[0,1]l [Tict £(@r(i-1), Tn(i)JdXs,
_ E(tx(B"))
- E(tr(An))’

<

By linearity of trace and expectation, we thus get 1 — e < E(tr(B"/k))/E(tr(A"/n)).
The second inequality in Equation (2.5) follows from Equation (2.4) in a similar way.0

Two questions immediately arise from this last proposition. First, it is not clear
which functions x satisfy Equation (2.4). We explore this topic empirically in Sec-

tion 3. For the Gaussian kernel x(z,y) = e M@=9)* ip particular, we note that for
each 7 € W/'(K,,) and s € (0,1],

2
f[O i e~ A izt (ETa(i—1),Tn (1)) dXs,
lim = — =
A—00 f[O I e~ A im1 (@r(i—1),r(i))dXs

Hence, there exists a length scale A that makes k satisfy (2.4). Analogous results
may be obtained for other radial basis function (RBF) kernels by finding appropriate
limits with respect to the length scale (as with respect to A above). However, the
exact relationship of s, [, and A in the previous display to a given tolerance € as in
(2.4) warrants further study, since it may allow for a more precise formulation of
moment bounds. This may be done in combination with studies similar to [14, 16].
Second, it is not clear a priori whether or not any distribution = that satisfies
(2.3) in the above proposition exists, and if it does, where its support lies. If such a
distribution exists, then the method outlined at the beginning of this section should
work. It turns out that such a distribution does exist; we next give an example.

This manuscript is for review purposes only.
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ExXaMPLE 1. Fizn =49, k =7. We construct a distribution = such that the ran-
dom vector z sampled from it satisfies the mized moment condition in Proposition 2.35.
To do so, we assume that z takes the same value in each coordinate; for such distri-
butions, the first equation of (2.3) is automatically satisfied. Then, to simplify the
search for =, we assume that it has finite support. This assumption makes the second
equation of (2.3) equivalent to the system of 7 equations in 8 unknowns

a+bte+d=(k/n)(})/(}) =1
aa+bﬁ+cw+d5—(/f/")(3)/(§) 8
ac® +bB% + cy? + ds* = (k/n) (g)/(g) 37
ao® + b3 + ¢y 4 d6* = (k/n) (Z)/(]Z) = 4324
ac + b8 + eyt + dot = (k/n)(2)/ (%) = 12 o7
aa® +b3% + ey® + ds® = (k/n) (1) / () = 285384
aa® +bB°% + 7% + do® = (k/n) (?)/(l;) = 12271512.

We picked z to have four distinct values o, 8,7, to give enough degrees of freedom
for it to satisfy the moment conditions of (2.3); that is, otherwise, we would not
have enough unknowns to satisfy the 7 equations above. The values a ~ 0.41166,
b ~ 0.56810, ¢ ~ 0.020241, d ~ 1.4709 - 107, o =~ 4.8651, B ~ 9.6827, v ~ 24.519,
and § = 130.90 form a solution to this system. Hence, taking = to be the distribution
that gives the vector z with all entries equal to «, all entries equal to B, all entries
equal to 7y, and all entries equal to & with probabilities a, b, ¢, and d, respectively, we
find that E satisfies the mized moment conditions of Equation (2.3). Note that this
is equivalent to simply letting Y be a random subset of points in X scaled by «, 5, v,
and §, with probabilities a, b, ¢, and d, respectively.

We found a distribution in Example 1 that we may use to build a matrix B
from A such that (2.5) holds, but only for the case that n = 49 and k = 7. We
did so by looking for a distribution = which gives a random vector z that can only
take the same value in all of its entries. For such distributions, the first equation of
(2.3) is automatically satisfied. Furthermore, we assumed Z is discrete, which yielded
a straightforward system of polynomial equations we could use to find = from the
second equation of (2.3).

This construction naturally leads to two questions: first, can we use this technique
to find such a distribution for every n, k such that k|n? And second, will the support of
such a distribution take values that are “too large” to truncate k in such a manner as
to make (2.5) provide a meaningfully-small €? To answer these last two questions, we
prove the following proposition. It states that we may always find a distribution with
nonnegative support satisfying (2.3), although further questions about its support
may be harder to answer.

PROPOSITION 2.4. Let k,n € N such that k is odd and kin. There exists a dis-
tribution 2 on the random variable z = (21, ..., zx), with nonnegative support in each
coordinate, such that (2.3) holds for all nontrivial subsets C C {1,...,n} of cardinality
at most k — 1.

Proof. If we restrict ourselves to the case that the support of = takes the same
value in each coordinate, the moment conditions become equivalent to k& prescribed
moment conditions for a univariate probability distribution Z with nonnegative sup-
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port:

E(Z7) = (k/n)(2)/(5) = 2 =,

;1
)

A:w»

This is the approach we had taken for specific values of £ and n in Example 1 above.
(Note that these moment conditions are largely unrelated to any moment conditions
we considered in Proposition 2.1.) But this is just the so-called Stieltjes moment prob-
lem, which is well-known to have a solution if certain moment matrices are positive
semidefinite and full-rank (or, equivalently, positive definite). For a complete treat-
ment of this question and questions on related moment problems, see the treatise of
Curto and Fialkow on the subject [7, Theorem 5.3]. From that result, we see that
showing the Proposition comes down to showing that the Hankel matrices

Ho M1 H(k—1)/2
H1 H2 H(k—1)/2+1
Hgn = . . ( .)/ and
LM(k—1)/2 M(k—1)/2+1 k-1 |
[ w2 H(k—1)/2 |
T
LM (k—1)/2  M(k—1)/2+1 He—1 |

are positive definite, where p; =

realize both Hy, ,, and Hj,

k
(111)/(l+1) for 1 =0,.
n 8 Gram matrices assomated to linearly independent sets

,k—1. We see this once we

of vectors in a Hilbert space In particular, consider the space V' of square-integrable
functions on the compact interval [0, 1] with respect to the Radon-Nikodym derivative

2" k=11 — )k For i = 0,...,(k — 1)/2 define v; = v/n — k(1/(1 — x))"+/2; and
for j = 0,...,(k —1)/2 — 1, define w; = vn—k(1/(1 — z))"*!. Clearly, we have

v, wj € Viori=0,...,(k—1)/2and j =0,...,
(k—1)/2 k—1)/2—1
(g7 anad fu )

(k—1)/2 —1. Furthermore, the sets
are linearly independent, and we see that

11 )
EOMTED (R
1)

Z) (n—(l+1))
n

k—(I+1)
(=B (k— (I +1))
T =@+

1
0

[ (A

/ 1 n—k—1 k+1

(I—x)
= <Uiﬂvj>V'

whenever ¢ + j =l for I = 0,...,k — 1. Hence, the Gram matrix Hy, associated to

This manuscript is for review purposes only.
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{vi}gigl)/ in Vis positive definite. Similarly,

1 ! 1 1 n—k—1 k+1
sy =, (R ) (R ) 0
= (wi, wj)v
—— B , . (k—1)/2-1 . .
whenever i +j =1 for l = 0,...,k — 2, so Hy_, associated to {wj}j:O inV is
also positive definite. 0

Here, we note two things: first, we assumed k is odd in showing the existence of
=Z. The case when k is even is handled similarly, so we omit it for brevity. The
main theoretical difference is that we use Theorem 5.1 of [7] (and therefore that the
distribution Z thus obtained is actually unique, but that is irrelevant for our examples)
instead of Theorem 5.3. Second, computing a distribution as in Example 1 may be no
small task for large values of k and may take a lot of computing power. Nevertheless,
since = does not depend on the specific choice of x as long as k satisfies the condition
of Equation (2.4), we may precompute the values Z for each combination of values of
k,n. This is the “preprocessing step” alluded to in the introduction.

3. Numerical experiments. The last proposition thus completes an answer
for how, given X = {z1,...,z,} with z; € U[0,1] for 1 <i <nand A = k(X, X), we
may design a framework for obtaining a matrix B such that Corollary 2.2 applies in
expectation. Namely, we will fix £ and n, precompute = as in Proposition 2.4 above,
and then take B = (Y, Y), where the Y = {y1,...,yx} is defined as in Proposition 2.3
using the distribution of Proposition 2.4. That is, Y is the set obtained by multiplying
a random subsample of X by a random scalar picked using =. Because this way of
obtaining Y is probabilistic and only guarantees moment matching in expectation,
we thus need to find the average of the jth largest eigenvalue of B, for 1 < j < k,
for a number of trials m of forming such matrices B. Even though = depends on n
and k, empirically m seems to depends on k alone. The average o;(B)s should then
correspond to bounds for the k quantiles of the eigenvalues of A as in (2.1). First, we
look at the performance of this framework for = as computed in Example 1 (that is,
we set n =49 and k =17):

EXAMPLE 2. Letn = 49, k =7, d =1, and k : R xR — R be defined by
k(x,y) = e~1000z=v)* " Gince m is so small in this case, we perform 10 trials of
forming A = (X, X) and average the jth largest eigenvalue for 1 < j < n. We
then perform m = 256000 trials of forming B = (Y,Y) according to the scheme in
Proposition 2.3 using the distribution from Proposition 2.4, and we average the jth
largest eigenvalue thus obtained for 1 < j < k. The resulting averaged eigenvalues of A
are plotted in Figure 3.1, along with the eigenvalue quantile bounds obtained from the
averaged eigenvalues of B. (We repeat each eigenvalue of B 49/7 =7 times in order
to better visualize the quantile bounds given for the eigenvalues of A in Corollary 2.2,
as in Figure 2.1.)
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Fic. 3.1. The averaged eigenvalues of A (blue dots) together with the repeated, averaged eigen-
values of B (red crosses and yellow circles), formed as in Ezample 2. Two averages over m = 256000
runs of finding B are shown, illustrating the variation inherent to our framework.

Note the length scale of k: setting x to have such quick decay away from the
diagonal seems to be necessary to have a meaningful correlation between the quantile
bounds obtained from the eigenvalue distribution of B for the eigenvalue distribution
of A. We will see in Example 5 what happens with our framework if this is not the
case. Also, as we noted in Section 1, setting d = 1 as in Example 2 obviates the
need for our approximation, since the resulting matrix A may be approximated for
our choice of Gaussian kernel using a banded matrix. Therefore, it may be more
illustrative to set d to something larger than one to better showcase the strengths of
the framework. We do so in the next two examples.

EXAMPLE 3. We setn =729, k=9,d =3, and s : R? x R? — R be defined by
Kk(x,y) = e~500(x=¥D*  4g before, we perform 10 trials of forming A = (X, X) and
average the jth largest eigenvalue for 1 < j < n. We perform m = 128000 trials of
forming B = (Y,Y) as in the previous examples and average the jth largest eigenvalue
thus obtained for 1 < j < k. The resulting averaged eigenvalues of A are plotted
in Figure 3.2, along with the eigenvalue quantile bounds obtained from the averaged
eigenvalues of B. (As before, we repeat each eigenvalue of B 729/9 = 81 times in
order to visualize the quantile bounds given for the eigenvalues of A in Corollary 2.2.)

In this previous example, setting d equal to 3 means that it is impossible to
approximate A by a (singly) banded matrix. We will continue showing the efficacy
of our framework for points X with an even higher dimension in the next example.
Finally, we note that the kernel used does not have to have any particular form (i.e.
we take k to be the Cauchy kernel instead of the Gaussian kernel), as long as the
steep decay away from the diagonal is maintained.
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Fic. 3.2. The averaged eigenvalues of A (blue dots) together with the repeated, averaged eigen-
values of B (red crosses and yellow circles), formed as in Ezample 3. Two averages over m = 128000
runs of finding B are shown, illustrating the variation inherent to our framework.

EXAMPLE 4. We set n =729, k=9, d =6, and x : R” x R” — R be defined
by k(x,y) = 1/(1 + 10000(|x — y|)?). As before, we perform 10 trials of forming
A = (X, X) and average the jth largest eigenvalue for 1 < j < n. We perform
m = 128000 trials of forming B = (Y,Y) and average the jth largest eigenvalue
thus obtained for 1 < j < k. The resulting averaged eigenvalues of A are plotted
in Figure 3.3, along with the eigenvalue quantile bounds obtained from the averaged
eigenvalues of B. (We repeat each eigenvalue of B 729/9 = 81 times in order to
visualize the quantile bounds given for the eigenvalues of A in Corollary 2.2.)

Finally, we will note what happens if the fast decay away from the diagonal in
Equation (2.4) is not satisfied: in the next example, we set all parameters equal to
those of Example 3, except the dimension of the points X is set to be 1 instead of 3.

EXAMPLE 5. Figure 3.4 shows what happens when the setup is kept exvactly the
same as in Example 3, except for setting d = 1. Observe that there seems to be no
correlation whatsoever between the eigenvalues of B and quantile bounds for A, which
we may attribute to a lack of decay of k away from the diagonal as required by (2.4).
(Note that A has low numerical rank here.)

We thus note here that, for higher dimensions, Examples 3 and 5 indicate that the
length scale involved in x does not have to be quite as small in higher dimensions as in
does in lower dimensions for fast decay to be satisfied. This corresponds to the well-
known (but unintuitive) heuristic that unit balls in high dimension are “concentrated
near the axes.” This last example therefore also illustrates the limitations of our
framework.

This manuscript is for review purposes only.



MIKHAIL LEPILOV 17

T T
1.015 |- <
1.01 ¢ B
]
= 3
= 3
g t00sFY 1
= 3
o0
= 5
1k e i
o S eee— Wisaverusices]
\
A
0.995 |- E
1 1 1 Il 1 1 1
100 200 300 400 500 600 700

Index of eigenvalue

Fic. 3.3. The averaged eigenvalues of A (blue dots) together with the repeated, averaged eigen-
values of B (red crosses and yellow circles), formed as in Example 4. Two averages over m = 8000
runs of finding B are shown, illustrating the variation inherent to our framework.
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Fic. 3.4. The averaged eigenvalues of A (blue dots) together with the repeated, averaged eigen-
values of B (red crosses and yellow circles), formed as in Ezample 5. Two averages over m = 128000
runs of finding B are shown, illustrating the variation inherent to our framework.
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4. Conclusion and future work. We have introduced a new framework that
aims to provide a way to approximate the eigenvalues of a kernel matrix evaluated
at sets of n points X which come from standard uniform distributions on R? without
having to form the full kernel matrix itself. In particular, after fixing &k, our framework
provides bounds in expectation on the k£ spectrum quantiles of the kernel matrix A.
Since we do not require forming the full matrix A, for k¥ < n, this new framework
allows us to find such bounds in subquadratic time relative to n. In particular, it
requires O(mk?) steps, where m is the number of times we form B. However, our
work includes a number of limitations that we aim to overcome in the future. We go
over these limitations one by one, and mention which directions to take to address
them.

First, our work so far concerned only points which come from the uniform distribu-
tion on R%. However, we may extend this work to consider any compactly-supported,
absolutely continuous distribution €2 by composing x with an appropriate coordinate
transformation, which in turn may be obtained from the CDF of 2. In doing so,
for our framework to work, we must ensure that an analog of the condition of Equa-
tion (2.4) is adequately satisfied on this composition of functions. A future study of
commonly-used distributions (for example, the multivariate normal distribution) will
be useful in finding empirical and analytic evidence for when this is the case.

Second, the distribution = provided by Proposition 2.4 seems to require a lot of
trials of forming, finding the eigenvalues of, and then averaging B in order to get a
good approximation for the quantiles of A. In other words, the constant m is high,
even if it does not depend explicitly on n. This seems to be because the probabilities
of some of the scalar multiples appear to be quite low in general. For example, in
Example 1, we require each coordinate of x to be multiplied by 6 = 130.90 with
probability d = 1.4709 - 107%. Another disadvantage of Z from Proposition 2.4 is
that precomputing the relevant values of z and their probabilities is computationally
expensive and becomes infeasible for large k. This distribution, however, is only one
distribution that satisfies (2.3). We know from [7] that there is not even a unique
discrete distribution satisfying Equation (2.3); furthermore, there may potentially be
continuous distributions satisfying Equation (2.3) that are easier to compute with for
our purpose. Thus, we would like to know if such distributions exist which cause our
quantile estimates to converge to their expectation with fewer trials than = requires.
If we obtain such distributions which require asymptotically fewer than O(n?) trials,
we would be guaranteed to find bounds for the quantiles of the eigenvalues of A in
provably subquadratic time. Furthermore, the approach of [16] may allow us solve the
moment problem for = approximately and with less computational cost, and then to
then find perturbative bounds from a “true solution” in the Wasserstein-1 distance.

In its present form, however, our work may already be applicable to the question
of locally finding the so-called intrinsic dimension of data. Namely, the manifold hy-
pothesis in data science is that real-world data embedded in high-dimensional space,
such as collections of 64-by-64-pixel images with certain properties (for example, con-
taining a dog) embedded in the space of all 64-by-64-pixel images, actually reside
on some kind of lower-dimensional manifold. Often, this is stated up to some per-
turbation from the addition of “noise.” This idea, taken literally for the case of a
C%-manifold, was tested in [10]. Less literal but more practical mathematical formula-
tions of this idea of a “latent dimension” are explored in [17], as well as the resulting
estimates for each notion of dimension.

Here, we propose a new such formulation. Until now, we have not paid much
attention to the parameter d used in the definition of the y;’s in Proposition 2.3.
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However, this parameter is key to obtaining good quantile bounds for the kernel
matrix A formed from X. See, for example, Figure 4.1 for the result of setting d = 2
or d = 4 instead of d = 3 when forming B in the setup of Example 3.

Therefore, if we start with the collection of points X restricted to a small volume
V in R? and wish to find the (local) dimension of the piece of a manifold where
that part of X “truly lives,” as the manifold hypothesis stipulates, we can use our
eigenvalue quantile estimation technique to see if we get accurate bounds after setting
d to several candidate values. That is, we could sample e.g. n =49 and k = 7 points
and sees which value of d works best to give quantile estimates. In doing so, we
would be assuming that our points are “locally uniformly” distributed (i.e. uniform
on an appropriate, small-enough chart of some manifold), and that the embedding
generating X restricted to V' guarantees that k(z,y) is far from 0 only for points x and
y that are close within the latent manifold. In making these assumptions, this setup
could effectively test a “local” manifold hypothesis. In addition, because of its locality,
this notion of dimension is likely related to various existing k-nearest-neighbor-type
estimators for intrinsic dimension [9].

Acknowledgements. The author sincerely thanks Levon Nurbekyan for his sup-
port and ideas related to the theoretical aspects of this work, as well as Yuanzhe Xi
and Shifan Zhao for the overall direction of the work and several key observations
motivating it.
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Fi1G. 4.1. Here, we reproduce Figure 3.2 of Example 3 as the middle figure, which shows good
quantile estimates. In the top and bottom figures, our setup is exactly the same as in Example 3,
except we set d = 2 (top figure) and d = 4 (bottom figure) when forming B. Since these are the
wrong values of d, we get worse quantile estimates in the top and bottom figures.
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