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Abstract. In data science, individual observations are often assumed to come independently3
from an underlying probability space. Kernel matrices formed from large sets of such observations4
arise frequently, for example during classification tasks. It is desirable to know the eigenvalue decay5
properties of these matrices without explicitly forming them, such as when determining if a low-6
rank approximation is feasible. In this work, we introduce a new eigenvalue quantile estimation7
framework for some kernel matrices. This framework gives meaningful bounds for all the eigenvalues8
of a kernel matrix while avoiding the cost of constructing the full matrix. The kernel matrices under9
consideration come from a kernel with quick decay away from the diagonal applied to uniformly-10
distributed sets of points in Euclidean space of any dimension. We prove the efficacy of this framework11
given certain bounds on the kernel function, and we provide empirical evidence for its accuracy. In the12
process, we also prove a very general interlacing-type theorem for finite sets of numbers. Additionally,13
we indicate an application of this framework to the study of the intrinsic dimension of data, as well14
as several other directions in which to generalize this work.15
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1. Introduction.18

Background. Kernel matrices that result from applying a positive-definite func-19

tion pairwise to a finite set of points X ⊆ Rd arise in several areas of computational20

mathematics such as image processing and machine learning. In the latter field es-21

pecially, common methods involve performing expensive computations with a kernel22

matrix, such as inverting it or finding its eigenvalues [18, 19]. The kernel matrix23

involved, however, may be of a prohibitively large size to even form, let alone to do24

computations with. On the other hand, if the matrix has quick eigenvalue decay rel-25

ative to its norm, then we may be able to efficiently carry out computations on its26

low-rank approximation instead. A good overview of such computations and their27

complexity is found in [6]. Hence, it is useful to study a priori the eigenvalue decay28

of a kernel matrix. Given the n data points with which the kernel matrix is formed,29

we would like to find ways to estimate all of its eigenvalues faster than by having to30

form the matrix first. That is, we would like to do so in a sub-quadratic number of31

operations relative to n.32

We consider a setting common in data science, which is when the points in X33

are assumed to be independent and identically-distributed, coming from some latent34

distribution. In the past, the study of eigenvalue decay of such kernel matrices often35

focused on asymptotic eigenvalue behavior as the number of distribution samples in X36

was taken to infinity, after making some appropriate assumptions on the distribution37

and kernel function involved [15, 4]. However, as the examples in [4] suggest, these38

bounds rely on the kernel function having its truncated eigendecomposition (in some39

appropriate function space) readily available. Furthermore, it is unclear exactly how40

many terms to keep when computing and truncating such an eigendecomposition41

in order to obtain an eigenvalue decay bound within some tolerance. Thus, it is42

impractical to use such ideas for our purposes of estimating eigenvalue decay of a43

given kernel matrix.44
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2 KERNEL MATRIX SPECTRUM ESTIMATION

These difficulties are sidestepped when empirical methods are used to obtain45

bounds on eigenvalues, such as matrix sketching. However, most sketching techniques46

typically require not only forming the kernel matrix but also finding matrix-vector47

products with sets of specially-crafted vectors. For some examples and an overview,48

see [22, 20]. Such techniques applied to an n × n matrix, therefore, would require a49

number of operations that scales at least quadratically in n, so most sketching ap-50

proaches do not provide a way to achieve our goal. One exception is the class of51

techniques known as Nyström methods, which can be thought of as matrix sketching52

methods that do not require forming the entire kernel matrix. In Nyström methods,53

a random subsample of the points in X, and hence of the kernel matrix, is used to54

obtain a low-rank decomposition of the full matrix. The spectrum of this randomly-55

subsampled matrix is shown to be correlated pointwise with the first few eigenvalues56

of the full matrix [21]. Various strategies for sampling the matrix and obtaining theo-57

retical pointwise accuracy guarantees for this correlation have been implemented over58

the years. Such guarantees depend on performing additional computations with the59

data points informing the choice of samples; see, for example, [8]. An in-depth empir-60

ical exploration of such guarantees, and especially their limitations, is given in [12].61

However, since the goal of such methods is to find the best low-rank approximation,62

and not to find whether or not a good such approximation exists, these accuracy63

guarantees only apply to give eigenvalue estimates for the first few eigenvalues. Fur-64

thermore, in practice, the low-cost “naive” Nyström method of [21] actually does not65

work to give a subsampled matrix with similar eigenvalues if the matrix has high66

numerical rank; see Figure 1.1 for an illustration of this phenomenon.67

Even more recently, related work comes from approximating graph spectra in68

subquadratic time, such as in [2, 5]. In this approach, the kernel matrix can be69

regarded as the Laplacian of a particular weighted complete graph. Specifically, each70

vertex corresponds to one point, and each edge has weight equal to the kernel evaluated71

at the points corresponding to the vertices that the edge connects. Methods based on72

this are different from Nyström methods and instead give bounds in the Wasserstein-73

1 metric, often referred to as the “earth-mover distance.” From this, however, it is74

difficult to obtain pointwise estimates of the matrix spectrum. The reference [2] does75

contain such estimates for the first few eigenvalues but not for the later eigenvalues.76

Finally, something close to being fit for our purpose may be found in [3]. This is77

a result for general symmetric matrices that, in its basic form, gives additive bounds78

unrelated to the magnitude of each eigenvalue for the later eigenvalues. This makes79

controlling errors difficult for the later eigenvalues, and it prevents us from using the80

approach if the numerical rank of the matrix is not already low.81

Hence, to obtain accurate pointwise estimates for all the eigenvalues of a given82

kernel matrix in subquadratic time, we must find a new empirical approach that83

avoids the issues of the methods above. To do so, we first note that all of the methods84

we mention so far use no more information than just the fact that the matrix is85

symmetric. Thus, using more information about the distribution underlying X, as86

well as the kernel involved in forming the matrix, may enable us to find a better87

approximation for its spectrum.88

Our contribution. In this work, we use this information to design a fundamen-89

tally new eigenvalue estimation technique based on finding bounds for the expected90

k quantiles of the eigenvalue distribution of a kernel matrix, for the case that k ≪ n.91

This is done, in turn, by matching the moments of this eigenvalue distribution with92

that of a smaller, k × k matrix formed specifically for the purpose. Empirically, it93
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Fig. 1.1. The first 100 eigenvalues of the kernel matrix (blue) formed when X consists of 512
points taken from the standard uniform distribution in one dimension, as well as those of its “naive”
Nyström approximation (red) with 32 points. Here, the kernel used is κ(x, y) = exp(−10(x − y)2)
(top figure), κ(x, y) = exp(−100(x−y)2) (middle figure), and κ(x, y) = exp(−10000(x−y)2) (bottom
figure). It is evident that, in the top figure, the eigenvalue decay of the subsampled matrix corresponds
well with the eigenvalue decay of the full matrix, but in the center and especially bottom figures, this
is no longer the case. This indicates that the Nyström method only works to give an estimate of
numerical rank if we know a priori that it is low for our given kernel matrix, as in the top figure.
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4 KERNEL MATRIX SPECTRUM ESTIMATION

turns out that this technique works precisely when the kernel in question has quick94

decay away from the diagonal, which corresponds to the case that the matrix is of95

high numerical rank. This complements the existing methods mentioned above, which96

do not give good accuracy guarantees in such cases (again, see Figure 1.1). Although97

it is true that in the case of a one-dimensional kernel, such matrices may be approx-98

imated by banded matrices, this is no longer the case when X is in Euclidean space99

of moderate or high dimension. Our framework, on the other hand, still applies even100

in the moderate- or high-dimensional setting.101

This new framework requires O(mk2) computations, where m is a constant that102

depends on the desired approximation accuracy. Thus, for certain distributions giving103

rise to X and kernels used to compute A, our new framework allows for the only104

subquadratic method to find bounds on the later eigenvalues of the resulting kernel105

matrix, after a preprocessing step that does not depend on the matrix or kernel. In106

addition, since this is an entirely new approach, it provides a natural set of questions107

for further study that could allow subquadratic eigenvalue estimates for wider classes108

of kernel matrices. Along the way, we also show a very general result concerning the109

interlacing of sets of real numbers which, to our knowledge, has never been shown110

before. Finally, we propose an application of this work to the problem of finding the111

so-called intrinsic dimension of a dataset.112

The rest of the paper is structured as follows: in Section 2, we detail our ap-113

proach. In the process, we prove several new results that show its efficacy in kernel114

matrix eigenvalue quantile estimation. Among these results is the aforementioned115

new, general interlacing result about finite sets of real numbers. In Section 3, we116

give some numerical experiments showing the strengths and limitations of our new117

framework. Finally, in Section 4, we pose a number of questions for further study118

that could improve the framework. We also suggest an application to the problem of119

dimension reduction in data science.120

Throughout the paper, we use the following notation. Let d, n ∈ N, and let121

X ⊆ Rd with |X| = n. Let κ : Rd × Rd → R be a symmetric, positive-definite122

function. Fix an indexing X = {x1, . . . , xn}. By κ(X,X), we mean the kernel matrix123

A ∈ Rn×n with entries Aij = κ(xi, xj). For a symmetrix matrix A ∈ Rn×n and some124

1 ≤ j ≤ n, we denote by σj(A) the jth largest eigenvalue of A. Finally, for a, b ∈ R125

with a ≤ b, we denote by U [a, b] the uniform distribution on the interval [a, b].126

2. Theoretical results. Fix X and A as above. We will assume throughout127

the paper that each xi ∼ U [0, 1], but we will comment later on how we may relax this128

assumption to obtain more general analogs of our main ideas. We concern ourselves129

with finding bounds for the eigenvalues of A.130

We do so by finding another kernel matrix B ∈ Rk×k, for k ≪ n, formed using k131

points sampled from among the xis. We wish for the k eigenvalues of B to then give132

bounds for the k quantiles of the eigenvalue distribution of A in the following way.133

Without loss of generality, we may assume k|n. We wish for B to have the property134

that135

(2.1) σ⌈ jkn ⌉−1(B) ≥ σj(A) ≥ σ⌈ jkn ⌉+1(B),136

for 1 ≤ j ≤ n, where we define “σ0(B) = ∞” and “σk+1(B) = 0.” In other words, we137

wish for each n/k consecutive eigenvalues, ordered of A to be “sandwiched” between138

two of the k eigenvalues of B, which we may compute in O(k2) time [13]. We may139

look ahead to Figure 2.1 for a picture of this, but we first state our motivation. The140

reason we wish to find another matrix B using a subsample of the original points,141
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heuristically, is to preserve information about the geometry of the distribution that142

gives rise to the xis. An implicit assumption is that n is so large compared to k that143

picking k of the xis is the same thing as drawing from the original distribution, so144

that B contains some information about the geometry of the points forming A.145

2.1. Interlacing property of sets of real numbers. We may expect to get146

something like the bounds in (2.1) if we match each of the k moments of the empirical147

spectral distributions of A and B, which are defined as the discrete uniform distri-148

butions A = {σ1(A), . . . , σn(A)} and B = {σ1(B), . . . , σk(B)}, respectively. This is149

because of the usual notion that the moments of a distribution convey its “shape.” In150

the case of the discrete uniform distribution B, we know that such shape information151

is contained entirely in its first k moments, since B contains only k points. Hence,152

we may informally think of matching each of the k moments of A and B as the best153

we can do in terms of estimating quantiles. Formally, we have the proposition below,154

which is a very general property of sets of real numbers.155

Note that, for convenience of notation, we assume henceforth that all the eigen-156

values of A and B are distinct. In practice, this assumption holds if the underlying157

distribution of X is continuous and the kernel is strictly decreasing away from the158

diagonal. However, the following proposition and corollary can be easily modified to159

hold even in the case of repeated eigenvalues.160

Proposition 2.1. Let S, T ⊆ R≥0 with |S| = n, |T | = k, and k|n. Denote161

by ai and bj the ith and jth largest elements of S and T , respectively, and suppose162 ∑n
i=1

ari
n =

∑k
i=1

bri
k for all r = 1, . . . , k. Then163

b⌈ jkn ⌉−1 ≤ aj ≤ b⌈ jkn ⌉+1164

for all j = 1, . . . , n, where we define b0 = 0 and bk+1 = ∞. (See Figure 2.1 for an165

illustration of this.)166
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Fig. 2.1. The sets S = {1, 2, 3, 4, 5, 7, 9, 12, 13, 14, 22, 23, 29, 30, 31} (blue dots) and T (solid
red dashes), where T is picked such that

∑15
i=1 a

r
i /15 =

∑5
i=1 b

r
i /5 for r = 1, . . . , 5. Hence, T

is approximately {1.51216, 6.52312, 9.54601, 20.5897, 30.1624}. Proposition 2.1 shows, for example,
that b3 ≤ a10, a11, a12 ≤ b5. This is illustrated with the blue arrows above.

Proof. Consider the discrete uniform probability distributions on S and T , with167

the former having cumulative distribution function FS . Then denoting by µi and168
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6 KERNEL MATRIX SPECTRUM ESTIMATION

νi the ith moments of these distributions on S and T for i = 0, . . . , k, respectively,169

our assumptions are equivalent to requiring that µi = νi for each i = 1, . . . , k, and170

therefore for each i ∈ N. The statement follows as a quick corollary to some classical171

results on the bounds for FS in terms of its moments, which we reproduce here.172

Following the notation and presentation of [1]—in particular, note the relation-173

ships in Equations 1.3 and 1.4 of Chapter 1—we construct the set of polynomials174

P0, . . . , Pk by the explicit formulas P0 = 1 and175

Pj =
1√

Dj−1Dj

∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µj
µ1 µ2 · · · µj+1

...
...

. . .
...

µj−1 µj · · · µ2j−1

1 x · · · xj

∣∣∣∣∣∣∣∣∣∣∣
176

for j = 1, . . . , k, where177

Dj =

∣∣∣∣∣∣∣∣∣
µ0 µ1 · · · µj
µ1 µ2 · · · µj+1

...
...

. . .
...

µj µj+1 · · · µ2j

∣∣∣∣∣∣∣∣∣178

for j = 0, . . . , k. These polynomials satisfy a number of properties, but here we note179

only the following: if we write the product PiPj as (PiPj)(x) =
∑deg(Pi) deg(Pj)
l=0 ci,j,lx

l180

for some coefficients ci,j,l, then181

deg(Pi) deg(Pj)∑
l=0

ci,j,lµl = δi,j .182

Since νi = µi for all i and because T has the discrete uniform distribution, this is183

equivalent to184

k∑
l=1

(PiPj)(bl)

k
= δi,j , or185

k∑
l=1

(PiPj)(bl) = kδi,j ,(2.2)186

where δi,j is the Kronecker delta. (In other words, in our case, (Pi)i=0,...,k is a sequence187

of polynomials orthogonal with respect to the average of the evaluation functionals188

at the bjs for j = 1, . . . , k.) Furthermore, following [11], we construct the “empirical189

Christoffel function”190

λk =
1∑k

i=0 P
2
i

191

Now, let xi for i = 1, . . . , k be the roots of Pk. Using the function λ, the authors in192

[11] note the following bounds on FS :193

1−
k∑
j=i

λ(xj) ≤ FS(xi) ≤
i∑

j=1

λ(xj).194
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By our definition of FS , the proposition therefore follows if we show that (1) the bi’s195

are precisely the roots xi of Pk, and (2) λ(xi) = 1/k for each i = 1, . . . , k. To see (1),196

we note that since µi = νi for all i ∈ N, for each bi we have197

Pk(bi) =
1√

Dk−1Dk

∣∣∣∣∣∣∣∣∣∣∣∣

(
1
k

)∑k
l=1 1

(
1
k

)∑k
l=1 bl · · ·

(
1
k

)∑k
l=1 b

k
l(

1
k

)∑k
l=1 bl

(
1
k

)∑k
l=1 b

2
l · · ·

(
1
k

)∑k
l=1 b

k+1
l

...
...

. . .
...(

1
k

)∑k
l=1 b

k−1
l

(
1
k

)∑k
l=1 b

k
l · · ·

(
1
k

)∑k
l=1 b

2k−1
l

1 bl · · · bkl

∣∣∣∣∣∣∣∣∣∣∣∣
198

= 1√
Dk−1Dk

∣∣∣∣∣∣∣∣∣∣∣



(
1
k

) (
1
k

)
· · ·

(
1
k

)
· · ·

(
1
k

)(
1
k

)
b1

(
1
k

)
b2 · · ·

(
1
k

)
bi · · ·

(
1
k

)
bk

...
...

...
...

. . .
...(

1
k

)
bk−1
1

(
1
k

)
bk−1
2 · · ·

(
1
k

)
bk−1
i · · ·

(
1
k

)
bk−1
k

0 0 · · · 1 · · · 0



1 b1 b21 · · · bk1
1 b2 b22 · · · bk2
...

... · · ·
. . .

...
1 bk b2k · · · bkk


∣∣∣∣∣∣∣∣∣∣∣

199

= 0.200

Now, note that by fact (1), we see that (2) is equivalent to the condition that201 ∑k
i=0 P

2
i (bi) = k for each i = 1, . . . , k. Define the matrix C by202

Cj,m =

k−1∑
i=0

∣∣∣∣∣∣∣∣∣∣∣∣



(
1
k

)∑k
l=1 1

(
1
k

)∑k
l=1 bl · · ·

(
1
k

)∑k
l=1 v

i
l(

1
k

)∑k
l=1 bl

(
1
k

)∑k
l=1 b

2
l · · ·

(
1
k

)∑k
l=1 b

i+1
l

.

.

.

.

.

.

.
.
.

.

.

.(
1
k

)∑k
l=1 b

i−1
l

(
1
k

)∑k
l=1 b

i
l · · ·

(
1
k

)∑k
l=1 b

2i−1
l

1 bj · · · bij





(
1
k

)∑k
l=1 1

(
1
k

)∑k
l=1 bl · · ·

(
1
k

)∑k
l=1 v

i
l(

1
k

)∑k
l=1 bl

(
1
k

)∑k
l=1 b

2
l · · ·

(
1
k

)∑k
l=1 b

i+1
l

.

.

.

.

.

.

.
.
.

.

.

.(
1
k

)∑k
l=1 b

i−1
l

(
1
k

)∑k
l=1 b

i
l · · ·

(
1
k

)∑k
l=1 b

2i−1
l

1 bm · · · bim



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
1
k

)∑k
l=1 1

(
1
k

)∑k
l=1 bl · · ·

(
1
k

)∑k
l=1 b

i
l(

1
k

)∑k
l=1 bl

(
1
k

)∑k
l=1 b

2
l · · ·

(
1
k

)∑k
l=1 b

i+1
l

.

.

.

.

.

.

.
.
.

.

.

.(
1
k

)∑k
l=1 b

i
l

(
1
k

)∑k
l=1 b

i+1
l

· · ·
(
1
k

)∑k
l=1 b

2i
l

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
(
1
k

)∑k
l=1 1

(
1
k

)∑k
l=1 bl · · ·

(
1
k

)∑k
l=1 b

i−1
l

.

.

.

.

.

.

.
.
.

.

.

.(
1
k

)∑k
l=1 b

i−1
l

(
1
k

)∑k
l=1 b

i
l · · ·

(
1
k

)∑k
l=1 b

2i−2
l

∣∣∣∣∣∣∣∣
;203

then (2) follows once we show that Cj,j = k for j = 1, . . . , k. To see this, we note that204

C = ATA, where205

Aj,m =

∣∣∣∣∣∣∣∣∣∣∣∣

(
1
k

)∑k
l=1 1

(
1
k

)∑k
l=1 bl · · ·

(
1
k

)∑k
l=1 v

j
l(

1
k

)∑k
l=1 bl

(
1
k

)∑k
l=1 b

2
l · · ·

(
1
k

)∑k
l=1 b

j+1
l

.

.

.

.

.

.

.
.
.

.

.

.(
1
k

)∑k
l=1 b

j−1
l

(
1
k

)∑k
l=1 b

j
l
· · ·

(
1
k

)∑k
l=1 b

2j−1
l

1 bm · · · bim

∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

(
1
k

)∑k
l=1 1

(
1
k

)∑k
l=1 bl · · ·

(
1
k

)∑k
l=1 b

j
l(

1
k

)∑k
l=1 bl

(
1
k

)∑k
l=1 b

2
l · · ·

(
1
k

)∑k
l=1 b

j+1
l

.

.

.

.

.

.

.
.
.

.

.

.(
1
k

)∑k
l=1 b

j
l

(
1
k

)∑k
l=1 b

j+1
l

· · ·
(
1
k

)∑k
l=1 b

2j
l

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
(
1
k

)∑k
l=1 1

(
1
k

)∑k
l=1 bl · · ·

(
1
k

)∑k
l=1 b

j−1
l

.

.

.

.

.

.

.
.
.

.

.

.(
1
k

)∑k
l=1 b

j−1
l

(
1
k

)∑k
l=1 b

j
l
· · ·

(
1
k

)∑k
l=1 b

2j−2
l

∣∣∣∣∣∣∣∣


1/2 .206

On the other hand, we see that207

(AAT )j,m =

k∑
i=1

Pj(bi)Pm(bi)208

= kδj,m,209

with the last equality by Equation (2.2). Hence, AAT = kIk×k, and therefore we have210

C = ATA = kIk×k. Thus, Cj,j = k for j = 1, . . . , k, as desired.211

Since the sum of the rth powers of all the eigenvalues of a matrix is equivalent to the212

trace of its rth power, Proposition 2.1 implies the following statement:213
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Corollary 2.2. Suppose A ∈ Rn×n and B ∈ Rk×k have distinct, nonnegative214

eigenvalues, and suppose we have tr (Br/k) = tr (Ar/n) for 1 ≤ r ≤ k. Then215

σ⌈ jkn ⌉−1(B) ≥ σj(A) ≥ σ⌈ jkn ⌉+1(B) for 1 ≤ j ≤ n, where we define “σ0(B) = ∞”216

and “σk+1(B) = 0.”217

Proof. Defining the empirical spectral distributions A = {σ1(A) . . . , σn(A)} and218

B = {σ1(B), . . . , σk(B)} as above, apply Proposition 2.1 while setting S = A and219

T = B. The result follows since tr(Ar) =
∑n
i=1(σi(A))

r and tr(Bs) =
∑k
j=1(σj(B))s220

for 1 ≤ r ≤ n and 1 ≤ s ≤ k, which follows, in turn, because A and B are positive-221

definite.222

2.2. Matching traces in expectation. Hence, given A, finding B such that223

Equation (2.1) holds requires us to match the traces of the rth powers of A and B224

for r = 1, . . . , k. Since A is a random matrix, we will concentrate on understanding225

the expected traces of Ar and Br. Here, we assume that n is large enough such that226

σi(A) does not vary very much from its expected value in relative terms. However,227

since k is small, we would need to form B repeatedly m times, where m depends on k228

and the desired approximation accuracy, and empirically compute the average value229

of σi(B). These σi(B)s would then be used in the way of (2.1).230

While we do not know of a way of matching these expected traces exactly, in the231

next proposition we show a way of matching them approximately if (1) κ is “close to232

the Kronecker delta”; that is, if κ has very quick decay away from the diagonal; and233

(2) we have access to a special probability distribution Ξ on Rk. More precisely, κ234

must satisfy the condition of Equation (2.4) below for some ϵ > 0 to give the relative235

moment bound (2.5), and Ξ must satisfy (2.3). See Figure 2.2 for an illustration of236

the condition on κ.237
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Fig. 2.2. The condition in (2.4): the left figure is a heatmap of the Kronecker delta on the region

[0, 1]× [0, 1], and the right figure is a heatmap of the Gaussian kernel κ1(x, y) = e−1000(x−y)2 on the
same region. Informally, we may think of the integral of the Kronecker delta over the blue subregion
[0, s]× [0, s] (the length of the red diagonal) as s times its integral over the entire region [0, 1]× [0, 1]
(the length of the entire diagonal). Of course, both integrals are formally 0. Similarly, we can
see that the integral of κ1 over [0, s] × [0, s] is approximately s times its integral over [0, 1] × [0, 1].

This is contrasted with the case, for example, of the Gaussian kernel κ2(x, y) = e−(x−y)2/10000,
whose integral over [0, s]× [0, s] is approximately s2 times its integral over [0, 1]× [0, 1]. Thus, the
condition (2.4) makes precise the way in which κ1 does and κ2 does not have fast decay away from
the diagonal.

In general, as we see in [14], approximate moment matching for a guarantee of238

pointwise closeness of two cumulative distribution functions may require prohibitively239

close tolerances. This is likely the main theoretical reason for the requirement that κ240
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decays quickly away from the diagonal. We will see in Section 3 how quick the decay241

has to be in practice. The recent work of [16, Theorem 1] suggests that we may be,242

however, be able to bound our approximate quantile estimates in the Wasserstein-1243

metric by a perturbative bound from the “true” quantile estimate.244

Once we have (1) and (2), we use the following strategy for picking B such that245

E(tr(Ar)/n) = E(tr(Br)/k) for all r = 1, . . . , k:246

1. we pick a set Y of some points y1, . . . , yk at random from X;247

2. we scale each yi by a random number zi, where the zis are picked from a248

distribution Ξ such that the random vector z = (z1, . . . , zk) satisfies (2.3);249

and250

3. we set B = κ(Y, Y ) and find its eigenvalues.251

We then repeat these steps m times to find the average σj(B) for j = 1, . . . , k.252

In order to prove that this works, for technical reasons, we need to fix notation253

for a walk on the complete graph on n vertices Kn. Namely, we identify a function254

π : {0, . . . , r} → {1, . . . , n} with a walk of length r starting (and ending) at a vertex255

m of the complete graph Kn, where the value of π(i) is the index of the vertex of Kn256

visited at the ith step. (In particular, note that since π is a walk, π(0) = π(r) = m.)257

We denote by |π| the cardinality of the image of π. Then we have the following258

proposition:259

Proposition 2.3. Let d, k, n ∈ N with k | n. Suppose z = (z1, . . . , zk) is a vector260

in Rk with distribution Ξ such that261

(2.3)

P (zi ̸= zj) = 0 for all 1 ≤ i, j ≤ k, and

E
(∏

i∈C zi
)
= k

n

( n
|C|+1)
( k
|C|+1)

262

for all nontrivial subsets C ⊆ {1, . . . , n} of cardinality at most k − 1. Suppose that263

κ : Rd × Rd → R is a positive-definite function such that, for some t ∈ (0, 1) and264

any walk π with |π| = l on Kn,265

(2.4)

∫
[0,s]l

∏l
i=1 κ(xπ(i−1), xπ(i))dxπ∫

[0,1]l

∏l
i=1 κ(xπ(i−1), xπ(i))dxπ

= s+ ϵ,266

for all s ∈ [t, 1]. Define xi ∼ U [0, 1] and yj ∼ (1/zj)
1/dU [0, 1] for 1 ≤ i ≤ n and267

1 ≤ j ≤ k; define Y = {y1, . . . , yk}; and set A = κ(X,X) and B = κ(Y, Y ). Then268

(2.5) 1− ϵ ≤ E (tr (Br/k))

E (tr (Ar/n))
≤ 1 + ϵ269

for r = 1, . . . , k.270

Proof. First, note that271

(Ar)mm =

r∑
l=1

∑
π

r∏
i=1

Aπ(i−1)π(i),272

where the inner sum ranges over all walks π of length r that visit l distinct vertices273

on the complete graph Kn, starting at the vertex labeled m. Denote the set of all274

such walks, starting at any vertex, by W r
l (Kn). This bookkeeping of walks will be275

important for our argument to follow. Similarly, we have276

(Br)mm =

r∑
l=1

∑
ψml

r∏
i=1

Bψ(i−1)ψ(i),277
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where the inner sum ranges over all walks ψm of length r that visit l distinct vertices278

on the complete graph Kk, starting at the vertex labeled m. Again, denote the set of279

all such walks, starting at any vertex, by W r
l (Kk).280

Now, note that by linearity of expectation,281

E (tr(Ar)) =

n∑
m=1

E ((Ar)mm)282

=

n∑
m=1

E

 r∑
l=1

∑
π∈W r

l (Kn)

r∏
i=1

Aπ(i−1)π(i)

283

=

r∑
l=1

∑
π∈W r

l (Kn)

E

(
r∏
i=1

Aπ(i−1)π(i)

)
.284

By the definition of expectation and the variables Aij , for each π ∈W r
l (Kn), we have285

E

(
r∏
i=1

Aπ(i−1)π(i)

)
=

∫
xSπ

r∏
i=1

Aπ(i−1)π(i)286

=

∫
xSπ

r∏
i=1

κ(xπ(i−1), xπ(i))287

=

∫
Rl

r∏
i=1

κ(xπ(i−1), xπ(i))fπ(xSπ )dxSπ288

=

∫
[0,1]l

r∏
i=1

κ(xπ(i−1), xπ(i))dxSπ ,289

where Sπ is the set of vertices visited on the walk π and fπ is the probability density290

function of the joint distribution of the random variable xSπ = (xπ(1), . . . , xπ(r)).291

Similarly, for ψ ∈W r
l (Kk), we have292

E

(
r∏
i=1

Bψ(i−1),ψ(i)

)
=

∫
Rk

∫
Rl

r∏
i=1

κ(yψ(i−1), yψ(i))gψ(ySψ )dyZ,Sψdz293

=

∫
Rk

∫
Rl

r∏
i=1

κ(yψ(i−1), yψ(i))fψ(F
−1
ψ (ySψ ))|Jac(F

−1
ψ )|dyZ,Sψdz294

=

∫
Rk

∫
∏
j∈Sψ

[0,1/zj ]

r∏
i=1

κ(yψ(i−1), yψ(i))
∏
j∈Sψ

zjdySψdz295

=

∫
Rk

∫
[0,1/z1]l

r∏
i=1

κ(yψ(i−1), yψ(i))z
l
1dySψdz,296

where Fψ : Rl → Rl is the projection onto the indices Sψ of the function defined297

by F (x) = (1/Z1, . . . , 1/Zk) · x, restricted to the indices Sψ. Note that the second298

equality follows from the change-of-variables formula for probability density functions299

applied to the variable y = (yψ(1), . . . , yψ(l)), and the third equality follows from the300

definition of F and the fact that fψ = 1 for every ψ. Finally, the fourth equality301

follows from the fact that P (Zi ̸= Zj) = 0 for all 1 ≤ i, j ≤ k.302
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Hence, we see that303

E(tr(Br))
E(tr(Ar))

=

∑r
l=1

∑
ψ∈W r

l (Kk)

∫
Rk
∫
[0,1/z1]l

∏r
i=1 κ(yψ(i−1), yψ(i))z

l
1dySψdz∑r

l=1

∑
π∈W r

l (Kn)

∫
[0,1]l

∏r
i=1 κ(xπ(i−1), xπ(i))dxSπ

304

=

∑r
l=1

(kl)
(nl)

∑
π∈W r

l (Kn)

∫
Rk
∫
[0,1/z1]l

∏r
i=1 κ(yπ(i−1), yπ(i))z

l
1dySπdz∑r

l=1

∑
π∈W r

l (Kn)

∫
[0,1]l

∏r
i=1 κ(xπ(i−1), xπ(i))dxSπ

,305

where the second equality follows from the fact that, for every walk of length r with306

1 ≤ r ≤ k visiting l distinct vertices on Kk, there are
(
n
l

)
/
(
k
l

)
such walks on Kn.307

Then, by our assumption on κ in Equation (2.4),308

(1− ϵ)
k

n
=

(1− ϵ)

(∑r
l=1

(kl)
(nl)

∑
π∈W r

l (Kn)

∫
[0,1]l

∏r
i=1 κ(yπ(i−1), yπ(i))dySπ

(
k
n

(nl)
(kl)

))
∑r
l=1

∑
π∈W r

l (Kn)

∫
[0,1]l

∏r
i=1 κ(xπ(i−1), xπ(i))dxSπ

309

=
(1− ϵ)

∑r
l=1

(kl)
(nl)

∑
π∈W r

l (Kn)

∫
[0,1]l

∏r
i=1 κ(yπ(i−1), yπ(i))dySπ

∫
Rk z

l−1
1 dz∑r

l=1

∑
π∈W r

l (Kn)

∫
[0,1]l

∏r
i=1 κ(xπ(i−1), xπ(i))dxSπ

310

=

∑r
l=1

∑
π∈W r

l (Kn)
(kl)
(nl)

∫
Rk

1−ϵ
z1

∫
[0,1]l

∏r
i=1 κ(yπ(i−1), yπ(i))z

l
1dySπdz∑r

l=1

∑
π∈W r

l (Kn)

∫
[0,1]l

∏r
i=1 κ(xπ(i−1), xπ(i))dxSπ

311

≤

∑r
l=1

∑
π∈W r

l (Kn)
(kl)
(nl)

∫
Rk
∫
[0,1/z1]l

∏r
i=1 κ(yπ(i−1), yπ(i))z

l
1dySπdz∑r

l=1

∑
π∈W r

l (Kn)

∫
[0,1]l

∏r
i=1 κ(xπ(i−1), xπ(i))dxSπ

312

=
E(tr(Br))
E(tr(Ar))

.313

By linearity of trace and expectation, we thus get 1− ϵ ≤ E(tr(Br/k))/E(tr(Ar/n)).314

The second inequality in Equation (2.5) follows from Equation (2.4) in a similar way.315

Two questions immediately arise from this last proposition. First, it is not clear316

which functions κ satisfy Equation (2.4). We explore this topic empirically in Sec-317

tion 3. For the Gaussian kernel κ(x, y) = e−λ(x−y)
2

in particular, we note that for318

each π ∈W r
l (Kn) and s ∈ (0, 1],319

lim
λ→∞

∫
[0,s]l

e−λ
∑r
i=1(xπ(i−1),xπ(i))

2dxSπ∫
[0,1]l

e−λ
∑r
i=1(xπ(i−1),xπ(i))2dxSπ

= s.320

Hence, there exists a length scale λ that makes κ satisfy (2.4). Analogous results321

may be obtained for other radial basis function (RBF) kernels by finding appropriate322

limits with respect to the length scale (as with respect to λ above). However, the323

exact relationship of s, l, and λ in the previous display to a given tolerance ϵ as in324

(2.4) warrants further study, since it may allow for a more precise formulation of325

moment bounds. This may be done in combination with studies similar to [14, 16].326

Second, it is not clear a priori whether or not any distribution Ξ that satisfies327

(2.3) in the above proposition exists, and if it does, where its support lies. If such a328

distribution exists, then the method outlined at the beginning of this section should329

work. It turns out that such a distribution does exist; we next give an example.330
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Example 1. Fix n = 49, k = 7. We construct a distribution Ξ such that the ran-331

dom vector z sampled from it satisfies the mixed moment condition in Proposition 2.3.332

To do so, we assume that z takes the same value in each coordinate; for such distri-333

butions, the first equation of (2.3) is automatically satisfied. Then, to simplify the334

search for Ξ, we assume that it has finite support. This assumption makes the second335

equation of (2.3) equivalent to the system of 7 equations in 8 unknowns336

a+ b+ c+ d = (k/n)
(
n
1

)
/
(
k
1

)
= 1337

aα+ bβ + cγ + dδ = (k/n)
(
n
2

)
/
(
k
2

)
= 8338

aα2 + bβ2 + cγ2 + dδ2 = (k/n)
(
n
3

)
/
(
k
3

)
= 376

5339

aα3 + bβ3 + cγ3 + dδ3 = (k/n)
(
n
4

)
/
(
k
4

)
= 4324

5340

aα4 + bβ4 + cγ4 + dδ4 = (k/n)
(
n
5

)
/
(
k
5

)
= 12972341

aα5 + bβ5 + cγ5 + dδ5 = (k/n)
(
n
6

)
/
(
k
6

)
= 285384342

aα6 + bβ6 + cγ6 + dδ6 = (k/n)
(
n
7

)
/
(
k
7

)
= 12271512.343

We picked z to have four distinct values α, β, γ, δ to give enough degrees of freedom344

for it to satisfy the moment conditions of (2.3); that is, otherwise, we would not345

have enough unknowns to satisfy the 7 equations above. The values a ≈ 0.41166,346

b ≈ 0.56810, c ≈ 0.020241, d ≈ 1.4709 · 10−6, α ≈ 4.8651, β ≈ 9.6827, γ ≈ 24.519,347

and δ ≈ 130.90 form a solution to this system. Hence, taking Ξ to be the distribution348

that gives the vector z with all entries equal to α, all entries equal to β, all entries349

equal to γ, and all entries equal to δ with probabilities a, b, c, and d, respectively, we350

find that Ξ satisfies the mixed moment conditions of Equation (2.3). Note that this351

is equivalent to simply letting Y be a random subset of points in X scaled by α, β, γ,352

and δ, with probabilities a, b, c, and d, respectively.353

We found a distribution in Example 1 that we may use to build a matrix B354

from A such that (2.5) holds, but only for the case that n = 49 and k = 7. We355

did so by looking for a distribution Ξ which gives a random vector z that can only356

take the same value in all of its entries. For such distributions, the first equation of357

(2.3) is automatically satisfied. Furthermore, we assumed Ξ is discrete, which yielded358

a straightforward system of polynomial equations we could use to find Ξ from the359

second equation of (2.3).360

This construction naturally leads to two questions: first, can we use this technique361

to find such a distribution for every n, k such that k|n? And second, will the support of362

such a distribution take values that are “too large” to truncate κ in such a manner as363

to make (2.5) provide a meaningfully-small ϵ? To answer these last two questions, we364

prove the following proposition. It states that we may always find a distribution with365

nonnegative support satisfying (2.3), although further questions about its support366

may be harder to answer.367

Proposition 2.4. Let k, n ∈ N such that k is odd and k|n. There exists a dis-368

tribution Ξ on the random variable z = (z1, . . . , zk), with nonnegative support in each369

coordinate, such that (2.3) holds for all nontrivial subsets C ⊆ {1, . . . , n} of cardinality370

at most k − 1.371

Proof. If we restrict ourselves to the case that the support of Ξ takes the same372

value in each coordinate, the moment conditions become equivalent to k prescribed373

moment conditions for a univariate probability distribution Z with nonnegative sup-374
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port:375

E(Zr) = (k/n)
(
n
2

)
/
(
k
2

)
=

k
n (

n
l+1)

( k
l+1)

, l = 0, . . . , k − 1.376

This is the approach we had taken for specific values of k and n in Example 1 above.377

(Note that these moment conditions are largely unrelated to any moment conditions378

we considered in Proposition 2.1.) But this is just the so-called Stieltjes moment prob-379

lem, which is well-known to have a solution if certain moment matrices are positive380

semidefinite and full-rank (or, equivalently, positive definite). For a complete treat-381

ment of this question and questions on related moment problems, see the treatise of382

Curto and Fialkow on the subject [7, Theorem 5.3]. From that result, we see that383

showing the Proposition comes down to showing that the Hankel matrices384

Hk,n =


µ0 µ1 · · · µ(k−1)/2

µ1 µ2 · · · µ(k−1)/2+1

...
...

. . .
...

µ(k−1)/2 µ(k−1)/2+1 · · · µk−1

 and385

H ′
k,n =


µ1 µ2 · · · µ(k−1)/2

µ2 µ3 · · · µ(k−1)/2+1

...
...

. . .
...

µ(k−1)/2 µ(k−1)/2+1 · · · µk−1

386

are positive definite, where µl =
k
n

(
n
l+1

)
/
(
k
l+1

)
for l = 0, . . . , k−1. We see this once we387

realize both Hk,n and H ′
k,n as Gram matrices associated to linearly independent sets388

of vectors in a Hilbert space. In particular, consider the space V of square-integrable389

functions on the compact interval [0, 1] with respect to the Radon-Nikodym derivative390

xn−k−1(1 − x)k+1. For i = 0, . . . , (k − 1)/2 define vi =
√
n− k(1/(1 − x))i+1/2; and391

for j = 0, . . . , (k − 1)/2 − 1, define wi =
√
n− k(1/(1 − x))i+1. Clearly, we have392

vi, wj ∈ V for i = 0, . . . , (k− 1)/2 and j = 0, . . . , (k− 1)/2− 1. Furthermore, the sets393

{vi}(k−1)/2
i=0 and {wj}(k−1)/2−1

j=0 are linearly independent, and we see that394

1
k
n

(
n
k

)µl = 1
k
n

(
n
k

) kn( nl+1

)(
k
l+1

)395

=
1(
n
k

) (
n
k

)(
n−(l+1)
k−(l+1)

)396

=
(n− k)!(k − (l + 1))!

(n− (l + 1))!
397

= (n− k)

∫ 1

0

xn−(l+2)−(k−(l+1))(1− x)k−ldx398

=

∫ 1

0

(√
n− k

1

(1− x)i+1/2

)(√
n− k

1

(1− x)j+1/2

)
xn−k−1(1− x)k+1dx399

= ⟨vi, vj⟩V .400

whenever i + j = l for l = 0, . . . , k − 1. Hence, the Gram matrix Hk,n associated to401
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{vi}(k−1)/2
i=0 in V is positive definite. Similarly,402

1
k
n

(
n
k

)µl+1 =

∫ 1

0

(√
n− k

1

(1− x)i+1

)(√
n− k

1

(1− x)j+1

)
xn−k−1(1− x)k+1dx403

= ⟨wi, wj⟩V404

whenever i + j = l for l = 0, . . . , k − 2, so H ′
k,n associated to {wj}(k−1)/2−1

j=0 in V is405

also positive definite.406

Here, we note two things: first, we assumed k is odd in showing the existence of407

Ξ. The case when k is even is handled similarly, so we omit it for brevity. The408

main theoretical difference is that we use Theorem 5.1 of [7] (and therefore that the409

distribution Ξ thus obtained is actually unique, but that is irrelevant for our examples)410

instead of Theorem 5.3. Second, computing a distribution as in Example 1 may be no411

small task for large values of k and may take a lot of computing power. Nevertheless,412

since Ξ does not depend on the specific choice of κ as long as κ satisfies the condition413

of Equation (2.4), we may precompute the values Ξ for each combination of values of414

k, n. This is the “preprocessing step” alluded to in the introduction.415

3. Numerical experiments. The last proposition thus completes an answer416

for how, given X = {x1, . . . , xn} with xi ∈ U [0, 1] for 1 ≤ i ≤ n and A = κ(X,X), we417

may design a framework for obtaining a matrix B such that Corollary 2.2 applies in418

expectation. Namely, we will fix k and n, precompute Ξ as in Proposition 2.4 above,419

and then take B = κ(Y, Y ), where the Y = {y1, . . . , yk} is defined as in Proposition 2.3420

using the distribution of Proposition 2.4. That is, Y is the set obtained by multiplying421

a random subsample of X by a random scalar picked using Ξ. Because this way of422

obtaining Y is probabilistic and only guarantees moment matching in expectation,423

we thus need to find the average of the jth largest eigenvalue of B, for 1 ≤ j ≤ k,424

for a number of trials m of forming such matrices B. Even though Ξ depends on n425

and k, empirically m seems to depends on k alone. The average σj(B)s should then426

correspond to bounds for the k quantiles of the eigenvalues of A as in (2.1). First, we427

look at the performance of this framework for Ξ as computed in Example 1 (that is,428

we set n = 49 and k = 7):429

Example 2. Let n = 49, k = 7, d = 1, and κ : R × R → R be defined by430

κ(x, y) = e−1000(x−y)2 . Since n is so small in this case, we perform 10 trials of431

forming A = (X,X) and average the jth largest eigenvalue for 1 ≤ j ≤ n. We432

then perform m = 256000 trials of forming B = (Y, Y ) according to the scheme in433

Proposition 2.3 using the distribution from Proposition 2.4, and we average the jth434

largest eigenvalue thus obtained for 1 ≤ j ≤ k. The resulting averaged eigenvalues of A435

are plotted in Figure 3.1, along with the eigenvalue quantile bounds obtained from the436

averaged eigenvalues of B. (We repeat each eigenvalue of B 49/7 = 7 times in order437

to better visualize the quantile bounds given for the eigenvalues of A in Corollary 2.2,438

as in Figure 2.1.)439
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Fig. 3.1. The averaged eigenvalues of A (blue dots) together with the repeated, averaged eigen-
values of B (red crosses and yellow circles), formed as in Example 2. Two averages over m = 256000
runs of finding B are shown, illustrating the variation inherent to our framework.

Note the length scale of κ: setting κ to have such quick decay away from the440

diagonal seems to be necessary to have a meaningful correlation between the quantile441

bounds obtained from the eigenvalue distribution of B for the eigenvalue distribution442

of A. We will see in Example 5 what happens with our framework if this is not the443

case. Also, as we noted in Section 1, setting d = 1 as in Example 2 obviates the444

need for our approximation, since the resulting matrix A may be approximated for445

our choice of Gaussian kernel using a banded matrix. Therefore, it may be more446

illustrative to set d to something larger than one to better showcase the strengths of447

the framework. We do so in the next two examples.448

Example 3. We set n = 729, k = 9, d = 3, and κ : R3 × R3 → R be defined by449

κ(x,y) = e−500(|x−y|)2 . As before, we perform 10 trials of forming A = (X,X) and450

average the jth largest eigenvalue for 1 ≤ j ≤ n. We perform m = 128000 trials of451

forming B = (Y, Y ) as in the previous examples and average the jth largest eigenvalue452

thus obtained for 1 ≤ j ≤ k. The resulting averaged eigenvalues of A are plotted453

in Figure 3.2, along with the eigenvalue quantile bounds obtained from the averaged454

eigenvalues of B. (As before, we repeat each eigenvalue of B 729/9 = 81 times in455

order to visualize the quantile bounds given for the eigenvalues of A in Corollary 2.2.)456

457

In this previous example, setting d equal to 3 means that it is impossible to458

approximate A by a (singly) banded matrix. We will continue showing the efficacy459

of our framework for points X with an even higher dimension in the next example.460

Finally, we note that the kernel used does not have to have any particular form (i.e.461

we take κ to be the Cauchy kernel instead of the Gaussian kernel), as long as the462

steep decay away from the diagonal is maintained.463
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Fig. 3.2. The averaged eigenvalues of A (blue dots) together with the repeated, averaged eigen-
values of B (red crosses and yellow circles), formed as in Example 3. Two averages over m = 128000
runs of finding B are shown, illustrating the variation inherent to our framework.

Example 4. We set n = 729, k = 9, d = 6, and κ : R7 × R7 → R be defined464

by κ(x,y) = 1/(1 + 10000(|x − y|)2). As before, we perform 10 trials of forming465

A = (X,X) and average the jth largest eigenvalue for 1 ≤ j ≤ n. We perform466

m = 128000 trials of forming B = (Y, Y ) and average the jth largest eigenvalue467

thus obtained for 1 ≤ j ≤ k. The resulting averaged eigenvalues of A are plotted468

in Figure 3.3, along with the eigenvalue quantile bounds obtained from the averaged469

eigenvalues of B. (We repeat each eigenvalue of B 729/9 = 81 times in order to470

visualize the quantile bounds given for the eigenvalues of A in Corollary 2.2.)471

Finally, we will note what happens if the fast decay away from the diagonal in472

Equation (2.4) is not satisfied: in the next example, we set all parameters equal to473

those of Example 3, except the dimension of the points X is set to be 1 instead of 3.474

Example 5. Figure 3.4 shows what happens when the setup is kept exactly the475

same as in Example 3, except for setting d = 1. Observe that there seems to be no476

correlation whatsoever between the eigenvalues of B and quantile bounds for A, which477

we may attribute to a lack of decay of κ away from the diagonal as required by (2.4).478

(Note that A has low numerical rank here.)479

We thus note here that, for higher dimensions, Examples 3 and 5 indicate that the480

length scale involved in κ does not have to be quite as small in higher dimensions as in481

does in lower dimensions for fast decay to be satisfied. This corresponds to the well-482

known (but unintuitive) heuristic that unit balls in high dimension are “concentrated483

near the axes.” This last example therefore also illustrates the limitations of our484

framework.485
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Fig. 3.3. The averaged eigenvalues of A (blue dots) together with the repeated, averaged eigen-
values of B (red crosses and yellow circles), formed as in Example 4. Two averages over m = 8000
runs of finding B are shown, illustrating the variation inherent to our framework.
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Fig. 3.4. The averaged eigenvalues of A (blue dots) together with the repeated, averaged eigen-
values of B (red crosses and yellow circles), formed as in Example 5. Two averages over m = 128000
runs of finding B are shown, illustrating the variation inherent to our framework.
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4. Conclusion and future work. We have introduced a new framework that486

aims to provide a way to approximate the eigenvalues of a kernel matrix evaluated487

at sets of n points X which come from standard uniform distributions on Rd without488

having to form the full kernel matrix itself. In particular, after fixing k, our framework489

provides bounds in expectation on the k spectrum quantiles of the kernel matrix A.490

Since we do not require forming the full matrix A, for k ≪ n, this new framework491

allows us to find such bounds in subquadratic time relative to n. In particular, it492

requires O(mk2) steps, where m is the number of times we form B. However, our493

work includes a number of limitations that we aim to overcome in the future. We go494

over these limitations one by one, and mention which directions to take to address495

them.496

First, our work so far concerned only points which come from the uniform distribu-497

tion on Rd. However, we may extend this work to consider any compactly-supported,498

absolutely continuous distribution Ω by composing κ with an appropriate coordinate499

transformation, which in turn may be obtained from the CDF of Ω. In doing so,500

for our framework to work, we must ensure that an analog of the condition of Equa-501

tion (2.4) is adequately satisfied on this composition of functions. A future study of502

commonly-used distributions (for example, the multivariate normal distribution) will503

be useful in finding empirical and analytic evidence for when this is the case.504

Second, the distribution Ξ provided by Proposition 2.4 seems to require a lot of505

trials of forming, finding the eigenvalues of, and then averaging B in order to get a506

good approximation for the quantiles of A. In other words, the constant m is high,507

even if it does not depend explicitly on n. This seems to be because the probabilities508

of some of the scalar multiples appear to be quite low in general. For example, in509

Example 1, we require each coordinate of x to be multiplied by δ = 130.90 with510

probability d = 1.4709 · 10−6. Another disadvantage of Ξ from Proposition 2.4 is511

that precomputing the relevant values of z and their probabilities is computationally512

expensive and becomes infeasible for large k. This distribution, however, is only one513

distribution that satisfies (2.3). We know from [7] that there is not even a unique514

discrete distribution satisfying Equation (2.3); furthermore, there may potentially be515

continuous distributions satisfying Equation (2.3) that are easier to compute with for516

our purpose. Thus, we would like to know if such distributions exist which cause our517

quantile estimates to converge to their expectation with fewer trials than Ξ requires.518

If we obtain such distributions which require asymptotically fewer than O(n2) trials,519

we would be guaranteed to find bounds for the quantiles of the eigenvalues of A in520

provably subquadratic time. Furthermore, the approach of [16] may allow us solve the521

moment problem for Ξ approximately and with less computational cost, and then to522

then find perturbative bounds from a “true solution” in the Wasserstein-1 distance.523

In its present form, however, our work may already be applicable to the question524

of locally finding the so-called intrinsic dimension of data. Namely, the manifold hy-525

pothesis in data science is that real-world data embedded in high-dimensional space,526

such as collections of 64-by-64-pixel images with certain properties (for example, con-527

taining a dog) embedded in the space of all 64-by-64-pixel images, actually reside528

on some kind of lower-dimensional manifold. Often, this is stated up to some per-529

turbation from the addition of “noise.” This idea, taken literally for the case of a530

C2-manifold, was tested in [10]. Less literal but more practical mathematical formula-531

tions of this idea of a “latent dimension” are explored in [17], as well as the resulting532

estimates for each notion of dimension.533

Here, we propose a new such formulation. Until now, we have not paid much534

attention to the parameter d used in the definition of the yj ’s in Proposition 2.3.535
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However, this parameter is key to obtaining good quantile bounds for the kernel536

matrix A formed from X. See, for example, Figure 4.1 for the result of setting d = 2537

or d = 4 instead of d = 3 when forming B in the setup of Example 3.538

Therefore, if we start with the collection of points X restricted to a small volume539

V in Rd and wish to find the (local) dimension of the piece of a manifold where540

that part of X “truly lives,” as the manifold hypothesis stipulates, we can use our541

eigenvalue quantile estimation technique to see if we get accurate bounds after setting542

d to several candidate values. That is, we could sample e.g. n = 49 and k = 7 points543

and sees which value of d works best to give quantile estimates. In doing so, we544

would be assuming that our points are “locally uniformly” distributed (i.e. uniform545

on an appropriate, small-enough chart of some manifold), and that the embedding546

generating X restricted to V guarantees that κ(x, y) is far from 0 only for points x and547

y that are close within the latent manifold. In making these assumptions, this setup548

could effectively test a “local” manifold hypothesis. In addition, because of its locality,549

this notion of dimension is likely related to various existing k-nearest-neighbor-type550

estimators for intrinsic dimension [9].551
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Fig. 4.1. Here, we reproduce Figure 3.2 of Example 3 as the middle figure, which shows good
quantile estimates. In the top and bottom figures, our setup is exactly the same as in Example 3,
except we set d = 2 (top figure) and d = 4 (bottom figure) when forming B. Since these are the
wrong values of d, we get worse quantile estimates in the top and bottom figures.
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