1 FAST SPECTRUM ESTIMATION OF SOME KERNEL MATRICES*

MIKHAIL LEPILOV[†]

Abstract. In data science, individual observations are often assumed to come independently 3 4 from an underlying probability space. Kernel matrices formed from large sets of such observations 5 arise frequently, for example during classification tasks. It is desirable to know the eigenvalue decay 6 properties of these matrices without explicitly forming them, such as when determining if a lowrank approximation is feasible. In this work, we introduce a new eigenvalue quantile estimation 7 8 framework for some kernel matrices. This framework gives meaningful bounds for all the eigenvalues of a kernel matrix while avoiding the cost of constructing the full matrix. The kernel matrices under 9 10 consideration come from a kernel with quick decay away from the diagonal applied to uniformly-11 distributed sets of points in Euclidean space of any dimension. We prove the efficacy of this framework 12 given certain bounds on the kernel function, and we provide empirical evidence for its accuracy. In the process, we also prove a very general interlacing-type theorem for finite sets of numbers. Additionally, 1314we indicate an application of this framework to the study of the intrinsic dimension of data, as well as several other directions in which to generalize this work.

16 Key words. eigenvalue algorithm, kernel matrix, interlacing theorem, quantile bounds

17 **AMS subject classifications.** 60B20, 62R07, 65F15, 68T09

18 **1. Introduction.**

2

Background. Kernel matrices that result from applying a positive-definite func-19tion pairwise to a finite set of points $X \subseteq \mathbb{R}^d$ arise in several areas of computational 20 mathematics such as image processing and machine learning. In the latter field es-2122 pecially, common methods involve performing expensive computations with a kernel matrix, such as inverting it or finding its eigenvalues [18, 19]. The kernel matrix 23involved, however, may be of a prohibitively large size to even form, let alone to do 2425computations with. On the other hand, if the matrix has quick eigenvalue decay relative to its norm, then we may be able to efficiently carry out computations on its 26 low-rank approximation instead. A good overview of such computations and their 27complexity is found in [6]. Hence, it is useful to study a priori the eigenvalue decay 28 of a kernel matrix. Given the n data points with which the kernel matrix is formed, 29 we would like to find ways to estimate all of its eigenvalues faster than by having to 30 form the matrix first. That is, we would like to do so in a sub-quadratic number of 31 operations relative to n. 32

We consider a setting common in data science, which is when the points in X33 are assumed to be independent and identically-distributed, coming from some latent distribution. In the past, the study of eigenvalue decay of such kernel matrices often 35 focused on asymptotic eigenvalue behavior as the number of distribution samples in X36 37 was taken to infinity, after making some appropriate assumptions on the distribution and kernel function involved [15, 4]. However, as the examples in [4] suggest, these 38 bounds rely on the kernel function having its truncated eigendecomposition (in some 39 appropriate function space) readily available. Furthermore, it is unclear exactly how 40 many terms to keep when computing and truncating such an eigendecomposition 41 42 in order to obtain an eigenvalue decay bound within some tolerance. Thus, it is 43 impractical to use such ideas for our purposes of estimating eigenvalue decay of a given kernel matrix. 44

^{*}Preprint.

Funding: The research of Mikhail Lepilov was supported in part by NSF grant DMS-2038118. [†]Department of Mathematics, Emory University, Atlanta, GA 30306 (mlepilo@emory.edu).

These difficulties are sidestepped when empirical methods are used to obtain 45 46 bounds on eigenvalues, such as matrix sketching. However, most sketching techniques typically require not only forming the kernel matrix but also finding matrix-vector 47 products with sets of specially-crafted vectors. For some examples and an overview, 48 see [22, 20]. Such techniques applied to an $n \times n$ matrix, therefore, would require a 49number of operations that scales at least quadratically in n, so most sketching ap-50proaches do not provide a way to achieve our goal. One exception is the class of techniques known as Nyström methods, which can be thought of as matrix sketching methods that do not require forming the entire kernel matrix. In Nyström methods, a random subsample of the points in X, and hence of the kernel matrix, is used to 54obtain a low-rank decomposition of the full matrix. The spectrum of this randomlysubsampled matrix is shown to be correlated pointwise with the first few eigenvalues 56 of the full matrix [21]. Various strategies for sampling the matrix and obtaining theoretical pointwise accuracy guarantees for this correlation have been implemented over 58 the years. Such guarantees depend on performing additional computations with the data points informing the choice of samples; see, for example, [8]. An in-depth empir-60 ical exploration of such guarantees, and especially their limitations, is given in [12]. 61 However, since the goal of such methods is to find the best low-rank approximation, 62 and not to find whether or not a good such approximation exists, these accuracy 63 guarantees only apply to give eigenvalue estimates for the first few eigenvalues. Fur-64 thermore, in practice, the low-cost "naive" Nyström method of [21] actually does not 65 work to give a subsampled matrix with similar eigenvalues if the matrix has high 66 67 numerical rank; see Figure 1.1 for an illustration of this phenomenon.

Even more recently, related work comes from approximating graph spectra in 68 subquadratic time, such as in [2, 5]. In this approach, the kernel matrix can be 69 regarded as the Laplacian of a particular weighted complete graph. Specifically, each 70 vertex corresponds to one point, and each edge has weight equal to the kernel evaluated 71at the points corresponding to the vertices that the edge connects. Methods based on 7273 this are different from Nyström methods and instead give bounds in the Wasserstein-1 metric, often referred to as the "earth-mover distance." From this, however, it is 74difficult to obtain pointwise estimates of the matrix spectrum. The reference [2] does 75contain such estimates for the first few eigenvalues but not for the later eigenvalues. 76Finally, something close to being fit for our purpose may be found in [3]. This is 77

a result for general symmetric matrices that, in its basic form, gives additive bounds
unrelated to the magnitude of each eigenvalue for the later eigenvalues. This makes
controlling errors difficult for the later eigenvalues, and it prevents us from using the
approach if the numerical rank of the matrix is not already low.

Hence, to obtain accurate pointwise estimates for all the eigenvalues of a given kernel matrix in subquadratic time, we must find a new empirical approach that avoids the issues of the methods above. To do so, we first note that all of the methods we mention so far use no more information than just the fact that the matrix is symmetric. Thus, using more information about the distribution underlying X, as well as the kernel involved in forming the matrix, may enable us to find a better approximation for its spectrum.

Our contribution. In this work, we use this information to design a fundamentally new eigenvalue estimation technique based on finding bounds for the expected k quantiles of the eigenvalue distribution of a kernel matrix, for the case that $k \ll n$. This is done, in turn, by matching the moments of this eigenvalue distribution with that of a smaller, $k \times k$ matrix formed specifically for the purpose. Empirically, it

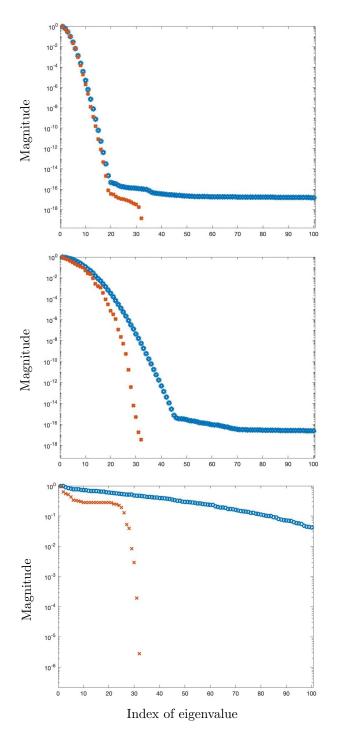


FIG. 1.1. The first 100 eigenvalues of the kernel matrix (blue) formed when X consists of 512 points taken from the standard uniform distribution in one dimension, as well as those of its "naive" Nyström approximation (red) with 32 points. Here, the kernel used is $\kappa(x, y) = \exp(-10(x-y)^2)$ (top figure), $\kappa(x, y) = \exp(-100(x-y)^2)$ (middle figure), and $\kappa(x, y) = \exp(-10000(x-y)^2)$ (bottom figure). It is evident that, in the top figure, the eigenvalue decay of the subsampled matrix corresponds well with the eigenvalue decay of the full matrix, but in the center and especially bottom figures, this is no longer the case. This indicates that the Nyström method only works to give an estimate of numerical rank if we know a priori that it is low for our given kernel matrix, as in the top figure.

turns out that this technique works precisely when the kernel in question has quick decay away from the diagonal, which corresponds to the case that the matrix is of high numerical rank. This complements the existing methods mentioned above, which do not give good accuracy guarantees in such cases (again, see Figure 1.1). Although it is true that in the case of a one-dimensional kernel, such matrices may be approximated by banded matrices, this is no longer the case when X is in Euclidean space of moderate or high dimension. Our framework, on the other hand, still applies even in the moderate- or high-dimensional setting.

This new framework requires $O(mk^2)$ computations, where m is a constant that 102 depends on the desired approximation accuracy. Thus, for certain distributions giving 103 rise to X and kernels used to compute A, our new framework allows for the only 104 105subquadratic method to find bounds on the later eigenvalues of the resulting kernel matrix, after a preprocessing step that does not depend on the matrix or kernel. In 106 addition, since this is an entirely new approach, it provides a natural set of questions 107 for further study that could allow subquadratic eigenvalue estimates for wider classes 108 of kernel matrices. Along the way, we also show a very general result concerning the 109 interlacing of sets of real numbers which, to our knowledge, has never been shown 110 111 before. Finally, we propose an application of this work to the problem of finding the so-called intrinsic dimension of a dataset. 112

The rest of the paper is structured as follows: in Section 2, we detail our ap-113 proach. In the process, we prove several new results that show its efficacy in kernel 114matrix eigenvalue quantile estimation. Among these results is the aforementioned 115 116 new, general interlacing result about finite sets of real numbers. In Section 3, we give some numerical experiments showing the strengths and limitations of our new 117 framework. Finally, in Section 4, we pose a number of questions for further study 118 that could improve the framework. We also suggest an application to the problem of 119dimension reduction in data science. 120

121 Throughout the paper, we use the following notation. Let $d, n \in \mathbb{N}$, and let 122 $X \subseteq \mathbb{R}^d$ with |X| = n. Let $\kappa : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ be a symmetric, positive-definite 123 function. Fix an indexing $X = \{x_1, \ldots, x_n\}$. By $\kappa(X, X)$, we mean the kernel matrix 124 $A \in \mathbb{R}^{n \times n}$ with entries $A_{ij} = \kappa(x_i, x_j)$. For a symmetrix matrix $A \in \mathbb{R}^{n \times n}$ and some 125 $1 \le j \le n$, we denote by $\sigma_j(A)$ the *j*th largest eigenvalue of A. Finally, for $a, b \in \mathbb{R}$ 126 with $a \le b$, we denote by U[a, b] the uniform distribution on the interval [a, b].

2. Theoretical results. Fix X and A as above. We will assume throughout the paper that each $x_i \sim U[0, 1]$, but we will comment later on how we may relax this assumption to obtain more general analogs of our main ideas. We concern ourselves with finding bounds for the eigenvalues of A.

131 We do so by finding another kernel matrix $B \in \mathbb{R}^{k \times k}$, for $k \ll n$, formed using k132 points sampled from among the x_i s. We wish for the k eigenvalues of B to then give 133 bounds for the k quantiles of the eigenvalue distribution of A in the following way. 134 Without loss of generality, we may assume k|n. We wish for B to have the property 135 that

136 (2.1)
$$\sigma_{\lceil \underline{jk} \rceil - 1}(B) \ge \sigma_{j}(A) \ge \sigma_{\lceil \underline{jk} \rceil + 1}(B),$$

for $1 \le j \le n$, where we define " $\sigma_0(B) = \infty$ " and " $\sigma_{k+1}(B) = 0$." In other words, we wish for each n/k consecutive eigenvalues, ordered of A to be "sandwiched" between two of the k eigenvalues of B, which we may compute in $O(k^2)$ time [13]. We may look ahead to Figure 2.1 for a picture of this, but we first state our motivation. The reason we wish to find another matrix B using a subsample of the original points,

142 heuristically, is to preserve information about the geometry of the distribution that

143 gives rise to the x_i s. An implicit assumption is that n is so large compared to k that

144 picking k of the x_i s is the same thing as drawing from the original distribution, so

145 that B contains some information about the geometry of the points forming A.

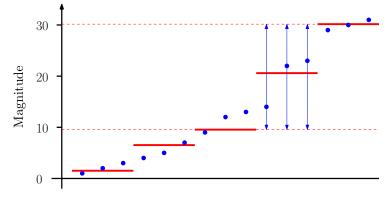
2.1. Interlacing property of sets of real numbers. We may expect to get 146 147 something like the bounds in (2.1) if we match each of the k moments of the empirical spectral distributions of A and B, which are defined as the discrete uniform distri-148butions $\mathcal{A} = \{\sigma_1(A), \ldots, \sigma_n(A)\}$ and $\mathcal{B} = \{\sigma_1(B), \ldots, \sigma_k(B)\}$, respectively. This is 149because of the usual notion that the moments of a distribution convey its "shape." In 150151the case of the discrete uniform distribution \mathcal{B} , we know that such shape information is contained entirely in its first k moments, since \mathcal{B} contains only k points. Hence, 152153we may informally think of matching each of the k moments of \mathcal{A} and \mathcal{B} as the best we can do in terms of estimating quantiles. Formally, we have the proposition below, 154which is a very general property of sets of real numbers. 155

Note that, for convenience of notation, we assume henceforth that all the eigenvalues of A and B are distinct. In practice, this assumption holds if the underlying distribution of X is continuous and the kernel is strictly decreasing away from the diagonal. However, the following proposition and corollary can be easily modified to hold even in the case of repeated eigenvalues.

161 PROPOSITION 2.1. Let $S, T \subseteq \mathbb{R}_{\geq 0}$ with |S| = n, |T| = k, and k|n. Denote 162 by a_i and b_j the *i*th and *j*th largest elements of S and T, respectively, and suppose 163 $\sum_{i=1}^{n} \frac{a_i^r}{n} = \sum_{i=1}^{k} \frac{b_i^r}{k}$ for all r = 1, ..., k. Then

164
$$b_{\lceil \frac{jk}{L} \rceil - 1} \le a_j \le b_{\lceil \frac{jk}{L} \rceil + 1}$$

for all j = 1, ..., n, where we define $b_0 = 0$ and $b_{k+1} = \infty$. (See Figure 2.1 for an illustration of this.)



Index of element of S, T (sorted by magnitude)

FIG. 2.1. The sets $S = \{1, 2, 3, 4, 5, 7, 9, 12, 13, 14, 22, 23, 29, 30, 31\}$ (blue dots) and T (solid red dashes), where T is picked such that $\sum_{i=1}^{15} a_i^r / 15 = \sum_{i=1}^{5} b_i^r / 5$ for $r = 1, \ldots, 5$. Hence, T is approximately $\{1.51216, 6.52312, 9.54601, 20.5897, 30.1624\}$. Proposition 2.1 shows, for example, that $b_3 \leq a_{10}, a_{11}, a_{12} \leq b_5$. This is illustrated with the blue arrows above.

167 Proof. Consider the discrete uniform probability distributions on S and T, with 168 the former having cumulative distribution function F_S . Then denoting by μ_i and 169 ν_i the *i*th moments of these distributions on S and T for $i = 0, \ldots, k$, respectively, 170 our assumptions are equivalent to requiring that $\mu_i = \nu_i$ for each $i = 1, \ldots, k$, and 171 therefore for each $i \in \mathbb{N}$. The statement follows as a quick corollary to some classical 172 results on the bounds for F_S in terms of its moments, which we reproduce here.

Following the notation and presentation of [1]—in particular, note the relationtion ships in Equations 1.3 and 1.4 of Chapter 1—we construct the set of polynomials P_0, \ldots, P_k by the explicit formulas $P_0 = 1$ and

ī.

176
$$P_{j} = \frac{1}{\sqrt{D_{j-1}D_{j}}} \begin{vmatrix} \mu_{0} & \mu_{1} & \cdots & \mu_{j} \\ \mu_{1} & \mu_{2} & \cdots & \mu_{j+1} \\ \vdots & \vdots & \ddots & \vdots \\ \mu_{j-1} & \mu_{j} & \cdots & \mu_{2j-1} \\ 1 & x & \cdots & x^{j} \end{vmatrix}$$

177 for j = 1, ..., k, where

178
$$D_{j} = \begin{vmatrix} \mu_{0} & \mu_{1} & \cdots & \mu_{j} \\ \mu_{1} & \mu_{2} & \cdots & \mu_{j+1} \\ \vdots & \vdots & \ddots & \vdots \\ \mu_{j} & \mu_{j+1} & \cdots & \mu_{2j} \end{vmatrix}$$

for j = 0, ..., k. These polynomials satisfy a number of properties, but here we note only the following: if we write the product $P_i P_j$ as $(P_i P_j)(x) = \sum_{l=0}^{\deg(P_i) \deg(P_j)} c_{i,j,l} x^l$ for some coefficients $c_{i,j,l}$, then

182
$$\sum_{l=0}^{\deg(P_i)\deg(P_j)} c_{i,j,l}\mu_l = \delta_{i,j}.$$

183 Since $\nu_i = \mu_i$ for all *i* and because *T* has the discrete uniform distribution, this is 184 equivalent to

185
$$\sum_{l=1}^{k} \frac{(P_i P_j)(b_l)}{k} = \delta_{i,j}, \text{ or }$$

186 (2.2)
$$\sum_{l=1}^{k} (P_i P_j)(b_l) = k \delta_{i,j},$$

where $\delta_{i,j}$ is the Kronecker delta. (In other words, in our case, $(P_i)_{i=0,...,k}$ is a sequence of polynomials orthogonal with respect to the average of the evaluation functionals at the b_j s for j = 1,...,k.) Furthermore, following [11], we construct the "empirical Christoffel function"

191
$$\lambda_k = \frac{1}{\sum_{i=0}^k P_i^2}$$

192 Now, let x_i for i = 1, ..., k be the roots of P_k . Using the function λ , the authors in 193 [11] note the following bounds on F_S :

194
$$1 - \sum_{j=i}^{k} \lambda(x_j) \le F_S(x_i) \le \sum_{j=1}^{i} \lambda(x_j).$$

By our definition of F_S , the proposition therefore follows if we show that (1) the b_i 's 195are precisely the roots x_i of P_k , and (2) $\lambda(x_i) = 1/k$ for each $i = 1, \ldots, k$. To see (1), 196we note that since $\mu_i = \nu_i$ for all $i \in \mathbb{N}$, for each b_i we have 197

$$198 \quad P_{k}(b_{i}) = \frac{1}{\sqrt{D_{k-1}D_{k}}} \begin{vmatrix} \left(\frac{1}{k}\right)\sum_{l=1}^{k} 1 & \left(\frac{1}{k}\right)\sum_{l=1}^{k} b_{l} & \cdots & \left(\frac{1}{k}\right)\sum_{l=1}^{k} b_{l}^{k} \\ \left(\frac{1}{k}\right)\sum_{l=1}^{k} b_{l} & \left(\frac{1}{k}\right)\sum_{l=1}^{k} b_{l}^{2} & \cdots & \left(\frac{1}{k}\right)\sum_{l=1}^{k} b_{l}^{k+1} \\ \vdots & \vdots & \ddots & \vdots \\ \left(\frac{1}{k}\right)\sum_{l=1}^{k} b_{l}^{k-1} & \left(\frac{1}{k}\right)\sum_{l=1}^{k} b_{l}^{k} & \cdots & \left(\frac{1}{k}\right)\sum_{l=1}^{k} b_{l}^{2k-1} \\ 1 & b_{l} & \cdots & b_{l}^{k} \end{vmatrix} \\ 199 \qquad = \frac{1}{\sqrt{D_{k-1}D_{k}}} \left\| \begin{bmatrix} \left(\frac{1}{k}\right) & \left(\frac{1}{k}\right) & \cdots & \left(\frac{1}{k}\right) & \cdots & \left(\frac{1}{k}\right) \\ \left(\frac{1}{k}\right) b_{1} & \left(\frac{1}{k}\right) b_{2} & \cdots & \left(\frac{1}{k}\right) b_{i} & \cdots & \left(\frac{1}{k}\right) b_{k} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \left(\frac{1}{k}\right) b_{1}^{k-1} & \left(\frac{1}{k}\right) b_{2}^{k-1} & \cdots & \left(\frac{1}{k}\right) b_{i}^{k-1} & \cdots & \left(\frac{1}{k}\right) b_{k}^{k-1} \\ 1 & b_{k} & b_{k}^{2} & \cdots & b_{k}^{k} \end{bmatrix} \\ 200 \qquad = 0. \end{aligned}$$

200

Now, note that by fact (1), we see that (2) is equivalent to the condition that 201 $\sum_{i=0}^{k} P_i^2(b_i) = k$ for each $i = 1, \dots, k$. Define the matrix C by 202

$$203 \qquad C_{j,m} = \sum_{i=0}^{k-1} \frac{\left| \begin{bmatrix} \frac{1}{k} \sum_{l=1}^{k} 1 & \frac{1}{k} \sum_{l=1}^{k} b_{l}^{i} \cdots & \frac{1}{k} \sum_{l=1}^{k} b_{l}^{i} \frac{1}{k} \\ \frac{1}{k} \sum_{l=1}^{k} b_{l}^{i} & \frac{1}{k} \sum_{l=1}^{k} b_{l}^{i} \frac{1}{k} \\ \frac{1}{k} \sum_{l=1}^{k} b_{l}^{i-1} & \frac{1}{k} \sum_{l=1}^{k} b_{l}^{i-1} \frac{1}{k} \\ \frac{1}{k} \sum_{l=1}^{k} b_{l}^{i-1} \frac{1}{k} \sum_{l=1}^{k} b_{l}^{i-1} \frac{1}{k} \\ \frac{1}{k} \sum_{l=1}^{k} b_{l}^{i} \frac{1}{k} \sum_{l=1}^{k} b_{l}^{i-1} \frac{1}{k} \\ \frac{1}{k} \sum_{l=1}^{k} b_{l}^{i} \frac{1}{k} \sum_{l=1}^{k} b_{l}^{i-1} \frac{1}{k} \\ \frac{1}{k} \sum_{l=1}^{k} b_{l}^{i} \frac{1}{k} \sum_{l=1}^{k} b_{l}^{i} \frac{1}{k} \\ \frac{1}{k} \\ \frac{1}{k}$$

then (2) follows once we show that $C_{j,j} = k$ for j = 1, ..., k. To see this, we note that $C_{j,j} = C = A^T A$, where

$$206 \qquad A_{j,m} = \frac{\begin{vmatrix} \binom{1}{k} \sum_{l=1}^{k} 1 & \binom{1}{k} \sum_{l=1}^{k} b_{l}^{l} \cdots & \binom{1}{k} \sum_{l=1}^{k} b_{l}^{j} \\ \binom{1}{k} \sum_{l=1}^{k} b_{l}^{l} & \binom{1}{k} \sum_{l=1}^{k} b_{l}^{l} \\ \frac{1}{k} \sum_{l=1}^{k} b_{l}^{l} & \binom{1}{k} \sum_{l=1}^{k} b_{l}^{l+1} \\ \frac{1}{k} \sum_{l=1}^{k} b_{l}^{l} & \binom{1}{k} \sum_{l=1}^{k} b_{l}^{l+1} \\ \frac{1}{k} \sum_{l=1}^{k} b_{l}^{l-1} & \binom{1}{k} \sum_{l=1}^{k} b_{l}^{l-1} \\ \frac{1}{k} \sum_{l=1}^{k} b_{l}^{l-1} & \binom{1}{k} \sum_{l=1}^{k} b_{l}^{l-1} \\ \frac{1}{k} \sum_{l=1}^{k} b_{l}^{l} & \binom{1}{k} \sum_{l=1}^{k} b_{l}^{l+1} \\ \frac{1}{k} \sum_{l=1}^{k} b_{l}^{l-1} & \binom{1}{k} \sum_{l=1}^{k} b_{l}^{l-1} \\ \frac{1}{k} \sum_{l=1}^{k} b_{l}^{l-1$$

On the other hand, we see that 207

208
$$(AA^T)_{j,m} = \sum_{i=1}^k P_j(b_i) P_m(b_i)$$

209
$$= k\delta_{j,m},$$

with the last equality by Equation (2.2). Hence, $AA^T = kI_{k \times k}$, and therefore we have $C = A^T A = kI_{k \times k}$. Thus, $C_{j,j} = k$ for j = 1, ..., k, as desired. 210211

Since the sum of the *r*th powers of all the eigenvalues of a matrix is equivalent to the 212

213 trace of its rth power, Proposition 2.1 implies the following statement: COROLLARY 2.2. Suppose $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{k \times k}$ have distinct, nonnegative eigenvalues, and suppose we have $\operatorname{tr}(B^r/k) = \operatorname{tr}(A^r/n)$ for $1 \leq r \leq k$. Then $\sigma_{\lceil \frac{jk}{n} \rceil - 1}(B) \geq \sigma_j(A) \geq \sigma_{\lceil \frac{jk}{n} \rceil + 1}(B)$ for $1 \leq j \leq n$, where we define " $\sigma_0(B) = \infty$ " and " $\sigma_{k+1}(B) = 0$."

218 Proof. Defining the empirical spectral distributions $\mathcal{A} = \{\sigma_1(A) \dots, \sigma_n(A)\}$ and 219 $\mathcal{B} = \{\sigma_1(B), \dots, \sigma_k(B)\}$ as above, apply Proposition 2.1 while setting $S = \mathcal{A}$ and 220 $T = \mathcal{B}$. The result follows since $\operatorname{tr}(A^r) = \sum_{i=1}^n (\sigma_i(A))^r$ and $\operatorname{tr}(B^s) = \sum_{j=1}^k (\sigma_j(B))^s$ 221 for $1 \leq r \leq n$ and $1 \leq s \leq k$, which follows, in turn, because A and B are positive-222 definite.

223 **2.2.** Matching traces in expectation. Hence, given A, finding B such that Equation (2.1) holds requires us to match the traces of the rth powers of A and B 224 for $r = 1, \ldots, k$. Since A is a random matrix, we will concentrate on understanding 225the expected traces of A^r and B^r . Here, we assume that n is large enough such that 226 $\sigma_i(A)$ does not vary very much from its expected value in relative terms. However, 227 since k is small, we would need to form B repeatedly m times, where m depends on k2.28 229 and the desired approximation accuracy, and empirically compute the average value of $\sigma_i(B)$. These $\sigma_i(B)s$ would then be used in the way of (2.1). 230

While we do not know of a way of matching these expected traces exactly, in the next proposition we show a way of matching them approximately if (1) κ is "close to the Kronecker delta"; that is, if κ has very quick decay away from the diagonal; and (2) we have access to a special probability distribution Ξ on \mathbb{R}^k . More precisely, κ must satisfy the condition of Equation (2.4) below for some $\epsilon > 0$ to give the relative moment bound (2.5), and Ξ must satisfy (2.3). See Figure 2.2 for an illustration of the condition on κ .

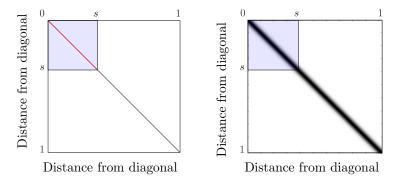


FIG. 2.2. The condition in (2.4): the left figure is a heatmap of the Kronecker delta on the region $[0,1] \times [0,1]$, and the right figure is a heatmap of the Gaussian kernel $\kappa_1(x,y) = e^{-1000(x-y)^2}$ on the same region. Informally, we may think of the integral of the Kronecker delta over the blue subregion $[0,s] \times [0,s]$ (the length of the red diagonal) as s times its integral over the entire region $[0,1] \times [0,1]$ (the length of the entire diagonal). Of course, both integrals are formally 0. Similarly, we can see that the integral of κ_1 over $[0,s] \times [0,s]$ is approximately s times its integral over $[0,1] \times [0,1]$. This is contrasted with the case, for example, of the Gaussian kernel $\kappa_2(x,y) = e^{-(x-y)^2/10000}$, whose integral over $[0,s] \times [0,s]$ is approximately s^2 times its integral over $[0,1] \times [0,1]$. Thus, the condition (2.4) makes precise the way in which κ_1 does and κ_2 does not have fast decay away from the diagonal.

In general, as we see in [14], approximate moment matching for a guarantee of pointwise closeness of two cumulative distribution functions may require prohibitively close tolerances. This is likely the main theoretical reason for the requirement that κ

- has to be in practice. The recent work of [16, Theorem 1] suggests that we may be,
- however, be able to bound our approximate quantile estimates in the Wasserstein-1
- 244 metric by a perturbative bound from the "true" quantile estimate.

Once we have (1) and (2), we use the following strategy for picking B such that $\mathbb{E}(\operatorname{tr}(A^r)/n) = \mathbb{E}(\operatorname{tr}(B^r)/k)$ for all $r = 1, \ldots, k$:

1. we pick a set Y of some points y_1, \ldots, y_k at random from X;

248 2. we scale each y_i by a random number z_i , where the z_i s are picked from a 249 distribution Ξ such that the random vector $\mathbf{z} = (z_1, \ldots, z_k)$ satisfies (2.3); 250 and

251 3. we set $B = \kappa(Y, Y)$ and find its eigenvalues.

252 We then repeat these steps m times to find the average $\sigma_j(B)$ for $j = 1, \ldots, k$.

In order to prove that this works, for technical reasons, we need to fix notation for a walk on the complete graph on n vertices K_n . Namely, we identify a function $\pi : \{0, \ldots, r\} \to \{1, \ldots, n\}$ with a walk of length r starting (and ending) at a vertex m of the complete graph K_n , where the value of $\pi(i)$ is the index of the vertex of K_n visited at the *i*th step. (In particular, note that since π is a walk, $\pi(0) = \pi(r) = m$.) We denote by $|\pi|$ the cardinality of the image of π . Then we have the following proposition:

260 PROPOSITION 2.3. Let $d, k, n \in \mathbb{N}$ with $k \mid n$. Suppose $\mathbf{z} = (z_1, \ldots, z_k)$ is a vector 261 in \mathbb{R}^k with distribution Ξ such that

262 (2.3)
$$\begin{cases} P(z_i \neq z_j) = 0 \text{ for all } 1 \leq i, j \leq k, \text{ and} \\ \mathbb{E}\left(\prod_{i \in C} z_i\right) = \frac{k}{n} \frac{\binom{n}{|C|+1}}{\binom{k}{|C|+1}} \end{cases}$$

for all nontrivial subsets $C \subseteq \{1, ..., n\}$ of cardinality at most k - 1. Suppose that $\kappa : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is a positive-definite function such that, for some $t \in (0, 1)$ and any walk π with $|\pi| = l$ on K_n ,

266 (2.4)
$$\frac{\int_{[0,s]^l} \prod_{i=1}^l \kappa(x_{\pi(i-1)}, x_{\pi(i)}) d\mathbf{x}_{\pi}}{\int_{[0,1]^l} \prod_{i=1}^l \kappa(x_{\pi(i-1)}, x_{\pi(i)}) d\mathbf{x}_{\pi}} = s + \epsilon$$

267 for all $s \in [t,1]$. Define $x_i \sim U[0,1]$ and $y_j \sim (1/z_j)^{1/d} U[0,1]$ for $1 \le i \le n$ and 268 $1 \le j \le k$; define $Y = \{y_1, \ldots, y_k\}$; and set $A = \kappa(X, X)$ and $B = \kappa(Y, Y)$. Then

269 (2.5)
$$1 - \epsilon \le \frac{\mathbb{E}\left(\operatorname{tr}\left(B^{r}/k\right)\right)}{\mathbb{E}\left(\operatorname{tr}\left(A^{r}/n\right)\right)} \le 1 + \epsilon$$

270 for r = 1, ..., k.

27

271 *Proof.* First, note that

2
$$(A^r)_{mm} = \sum_{l=1}^r \sum_{\pi} \prod_{i=1}^r A_{\pi(i-1)\pi(i)},$$

where the inner sum ranges over all walks π of length r that visit l distinct vertices on the complete graph K_n , starting at the vertex labeled m. Denote the set of all such walks, starting at any vertex, by $W_l^r(K_n)$. This bookkeeping of walks will be important for our argument to follow. Similarly, we have

277
$$(B^r)_{mm} = \sum_{l=1}^r \sum_{\psi_l^m} \prod_{i=1}^r B_{\psi(i-1)\psi(i)}$$

This manuscript is for review purposes only.

where the inner sum ranges over all walks ψ_m of length r that visit l distinct vertices 278on the complete graph K_k , starting at the vertex labeled m. Again, denote the set of 279all such walks, starting at any vertex, by $W_l^r(K_k)$. 280

Now, note that by linearity of expectation, 281

282
$$\mathbb{E}\left(\operatorname{tr}(A^{r})\right) = \sum_{m=1}^{n} \mathbb{E}\left((A^{r})_{mm}\right)$$

283
$$= \sum_{m=1}^{n} \mathbb{E}\left(\sum_{l=1}^{r} \sum_{\pi \in W_l^r(K_n)} \prod_{i=1}^{r} A_{\pi(i-1)\pi(i)}\right)$$

284
$$= \sum_{l=1}^r \sum_{\pi \in W_l^r(K_n)} \mathbb{E}\left(\prod_{i=1}^r A_{\pi(i-1)\pi(i)}\right).$$

By the definition of expectation and the variables A_{ij} , for each $\pi \in W_l^r(K_n)$, we have 285

286
$$\mathbb{E}\left(\prod_{i=1}^{r} A_{\pi(i-1)\pi(i)}\right) = \int_{\mathbf{xs}_{\pi}} \prod_{i=1}^{r} A_{\pi(i-1)\pi(i)}$$

287
$$= \int_{\mathbf{x}_{\mathbf{S}_{\pi}}} \prod_{i=1}^{r} \kappa(x_{\pi(i-1)}, x_{\pi(i)})$$

288
$$= \int_{\mathbb{R}^l} \prod_{i=1}^r \kappa(x_{\pi(i-1)}, x_{\pi(i)}) f_{\pi}(\mathbf{x}_{\mathbf{S}_{\pi}}) d\mathbf{x}_{\mathbf{S}_{\pi}}$$

289
$$= \int_{[0,1]^l} \prod_{i=1}^r \kappa(x_{\pi(i-1)}, x_{\pi(i)}) d\mathbf{x}_{\mathbf{S}_{\pi}},$$

where S_{π} is the set of vertices visited on the walk π and f_{π} is the probability density 290function of the joint distribution of the random variable $\mathbf{x}_{\mathbf{S}_{\pi}} = (x_{\pi(1)}, \ldots, x_{\pi(r)}).$ 291 Similarly, for $\psi \in W_l^r(K_k)$, we have 292

293
$$\mathbb{E}\left(\prod_{i=1}^{r} B_{\psi(i-1),\psi(i)}\right) = \int_{\mathbb{R}^{k}} \int_{\mathbb{R}^{l}} \prod_{i=1}^{r} \kappa(y_{\psi(i-1)}, y_{\psi(i)}) g_{\psi}(\mathbf{y}_{\mathbf{S}_{\psi}}) d\mathbf{y}_{\mathbf{Z},\mathbf{S}_{\psi}} d\mathbf{z}$$
294
$$= \int_{\mathbb{R}^{k}} \int_{\mathbb{R}^{l}} \prod_{i=1}^{r} \kappa(y_{\psi(i-1)}, y_{\psi(i)}) f_{\psi}(F_{\psi}^{-1}(\mathbf{y}_{\mathbf{S}_{\psi}})) |\operatorname{Jac}(F_{\psi}^{-1})| d\mathbf{y}_{\mathbf{Z},\mathbf{S}_{\psi}} d\mathbf{z}$$

295
$$= \int_{\mathbb{R}^k} \int_{\prod_{j \in S_{\psi}} [0, 1/z_j]} \prod_{i=1}^r \kappa(y_{\psi(i-1)}, y_{\psi(i)}) \prod_{j \in S_{\psi}} z_j d\mathbf{y}_{\mathbf{S}_{\psi}} d\mathbf{z}$$

296
$$= \int_{\mathbb{R}^k} \int_{[0,1/z_1]^l} \prod_{i=1}^r \kappa(y_{\psi(i-1)}, y_{\psi(i)}) z_1^l d\mathbf{y}_{\mathbf{S}_{\psi}} d\mathbf{z}$$

where $F_{\psi} : \mathbb{R}^l \to \mathbb{R}^l$ is the projection onto the indices S_{ψ} of the function defined 297by $F(\mathbf{x}) = (1/Z_1, \dots, 1/Z_k) \cdot \mathbf{x}$, restricted to the indices S_{ψ} . Note that the second 298 equality follows from the change-of-variables formula for probability density functions 299applied to the variable $\mathbf{y} = (y_{\psi(1)}, \dots, y_{\psi(l)})$, and the third equality follows from the 300 definition of F and the fact that $f_{\psi} = 1$ for every ψ . Finally, the fourth equality 301 follows from the fact that $P(Z_i \neq Z_j) = 0$ for all $1 \leq i, j \leq k$. 302

303 Hence, we see that

$$304 \qquad \frac{\mathbb{E}(\operatorname{tr}(B^{r}))}{\mathbb{E}(\operatorname{tr}(A^{r}))} = \frac{\sum_{l=1}^{r} \sum_{\psi \in W_{l}^{r}(K_{k})} \int_{\mathbb{R}^{k}} \int_{[0,1/z_{1}]^{l}} \prod_{i=1}^{r} \kappa(y_{\psi(i-1)}, y_{\psi(i)}) z_{1}^{l} d\mathbf{y}_{\mathbf{S}_{\psi}} d\mathbf{z}}{\sum_{l=1}^{r} \sum_{\pi \in W_{l}^{r}(K_{n})} \int_{[0,1]^{l}} \prod_{i=1}^{r} \kappa(x_{\pi(i-1)}, x_{\pi(i)}) d\mathbf{x}_{\mathbf{S}_{\pi}}}$$

305

$$=\frac{\sum_{l=1}^{r}\frac{\binom{k}{l}}{\binom{n}{l}}\sum_{\pi\in W_{l}^{r}(K_{n})}\int_{\mathbb{R}^{k}}\int_{[0,1/z_{1}]^{l}}\prod_{i=1}^{r}\kappa(y_{\pi(i-1)},y_{\pi(i)})z_{1}^{l}d\mathbf{y}_{\mathbf{S}_{\pi}}d\mathbf{z}}{\sum_{l=1}^{r}\sum_{\pi\in W_{l}^{r}(K_{n})}\int_{[0,1]^{l}}\prod_{i=1}^{r}\kappa(x_{\pi(i-1)},x_{\pi(i)})d\mathbf{x}_{\mathbf{S}_{\pi}}}$$

where the second equality follows from the fact that, for every walk of length r with $1 \leq r \leq k$ visiting l distinct vertices on K_k , there are $\binom{n}{l}/\binom{k}{l}$ such walks on K_n . Then, by our assumption on κ in Equation (2.4),

$$309 \quad (1-\epsilon)\frac{k}{n} = \frac{(1-\epsilon)\left(\sum_{l=1}^{r} \frac{\binom{k}{l}}{\binom{n}{l}}\sum_{\pi \in W_{l}^{r}(K_{n})}\int_{[0,1]^{l}}\prod_{i=1}^{r}\kappa(y_{\pi(i-1)}, y_{\pi(i)})d\mathbf{y}_{\mathbf{s}_{\pi}}\left(\frac{k}{n}\frac{\binom{n}{l}}{\binom{n}{l}}\right)\right)}{\sum_{l=1}^{r}\sum_{\pi \in W_{l}^{r}(K_{n})}\int_{[0,1]^{l}}\prod_{i=1}^{r}\kappa(x_{\pi(i-1)}, x_{\pi(i)})d\mathbf{x}_{\mathbf{s}_{\pi}}}(1-\epsilon)\sum_{l=1}^{r}\frac{\binom{k}{l}}{\binom{n}{l}}\sum_{\pi \in W_{l}^{r}(K_{n})}\int_{[0,1]^{l}}\prod_{i=1}^{r}\kappa(y_{\pi(i-1)}, y_{\pi(i)})d\mathbf{y}_{\mathbf{s}_{\pi}}\int_{\mathbb{R}^{k}}z_{1}^{l-1}d\mathbf{z}}$$

 $\sum_{l=1}^{r} \sum_{\pi \in W_{l}^{r}(K_{n})} \int_{[0,1]^{l}} \prod_{i=1}^{r} \kappa(x_{\pi(i-1)}, x_{\pi(i)}) d\mathbf{x}_{\mathbf{S}_{\pi}}$

310

311
$$= \frac{\sum_{l=1}^{r} \sum_{\pi \in W_{l}^{r}(K_{n})} \frac{\binom{k}{l}}{\binom{n}{l}} \int_{\mathbb{R}^{k}} \frac{1-\epsilon}{z_{1}} \int_{[0,1]^{l}} \prod_{i=1}^{r} \kappa(y_{\pi(i-1)}, y_{\pi(i)}) z_{1}^{l} d\mathbf{y}_{\mathbf{S}_{\pi}} d\mathbf{z}}{\sum_{l=1}^{r} \sum_{\pi \in W_{l}^{r}(K_{n})} \int_{[0,1]^{l}} \prod_{i=1}^{r} \kappa(x_{\pi(i-1)}, x_{\pi(i)}) d\mathbf{x}_{\mathbf{S}_{\pi}}}$$

312
$$\leq \frac{\sum_{l=1}^{r} \sum_{\pi \in W_{l}^{r}(K_{n})} \frac{\binom{k}{l}}{\binom{n}{l}} \int_{\mathbb{R}^{k}} \int_{[0,1/z_{1}]^{l}} \prod_{i=1}^{r} \kappa(y_{\pi(i-1)}, y_{\pi(i)}) z_{1}^{l} d\mathbf{y}_{\mathbf{S}_{\pi}} d\mathbf{z}}{\sum_{l=1}^{r} \sum_{\pi \in W_{l}^{r}(K_{n})} \int_{[0,1]^{l}} \prod_{i=1}^{r} \kappa(x_{\pi(i-1)}, x_{\pi(i)}) d\mathbf{x}_{\mathbf{S}_{\pi}}}$$

313
$$= \frac{\mathbb{E}(\operatorname{tr}(B^r))}{\mathbb{E}(\operatorname{tr}(A^r))}$$

By linearity of trace and expectation, we thus get $1 - \epsilon \leq \mathbb{E}(\operatorname{tr}(B^r/k))/\mathbb{E}(\operatorname{tr}(A^r/n))$. The second inequality in Equation (2.5) follows from Equation (2.4) in a similar way.

Two questions immediately arise from this last proposition. First, it is not clear which functions κ satisfy Equation (2.4). We explore this topic empirically in Section 3. For the Gaussian kernel $\kappa(x, y) = e^{-\lambda(x-y)^2}$ in particular, we note that for each $\pi \in W_l^r(K_n)$ and $s \in (0, 1]$,

320
$$\lim_{\lambda \to \infty} \frac{\int_{[0,s]^l} e^{-\lambda \sum_{i=1}^r (x_{\pi(i-1)}, x_{\pi(i)})^2 d\mathbf{x} \mathbf{s}_{\pi}}}{\int_{[0,1]^l} e^{-\lambda \sum_{i=1}^r (x_{\pi(i-1)}, x_{\pi(i)})^2 d\mathbf{x} \mathbf{s}_{\pi}}} = s$$

Hence, there exists a length scale λ that makes κ satisfy (2.4). Analogous results may be obtained for other radial basis function (RBF) kernels by finding appropriate limits with respect to the length scale (as with respect to λ above). However, the exact relationship of s, l, and λ in the previous display to a given tolerance ϵ as in (2.4) warrants further study, since it may allow for a more precise formulation of moment bounds. This may be done in combination with studies similar to [14, 16].

Second, it is not clear *a priori* whether or not any distribution Ξ that satisfies (2.3) in the above proposition exists, and if it does, where its support lies. If such a distribution exists, then the method outlined at the beginning of this section should work. It turns out that such a distribution does exist; we next give an example. 331 EXAMPLE 1. Fix n = 49, k = 7. We construct a distribution Ξ such that the ran-332dom vector \mathbf{z} sampled from it satisfies the mixed moment condition in Proposition 2.3. To do so, we assume that \mathbf{z} takes the same value in each coordinate; for such distri-333 butions, the first equation of (2.3) is automatically satisfied. Then, to simplify the 334 search for Ξ , we assume that it has finite support. This assumption makes the second 335 equation of (2.3) equivalent to the system of 7 equations in 8 unknowns 336

 $a+b+c+d = (k/n)\binom{n}{1}/\binom{k}{1} = 1$ 337

338
$$a\alpha + b\beta + c\gamma + d\delta = (k/n)\binom{n}{2}/\binom{k}{2} = 8$$

339
$$a\alpha^2 + b\beta^2 + c\gamma^2 + d\delta^2 = (k/n)\binom{n}{3} / \binom{k}{3} = \frac{376}{5}$$

340
$$a\alpha^3 + b\beta^3 + c\gamma^3 + d\delta^3 = (k/n)\binom{n}{4} / \binom{k}{4} = \frac{4324}{5}$$

341
342

$$a\alpha^{4} + b\beta^{4} + c\gamma^{4} + d\delta^{4} = (k/n)\binom{n}{5}/\binom{k}{5} = 12972$$

$$a\alpha^{5} + b\beta^{5} + c\gamma^{5} + d\delta^{5} = (k/n)\binom{n}{6}/\binom{k}{6} = 285384$$

342

343
$$a\alpha^6 + b\beta^6 + c\gamma^6 + d\delta^6 = (k/n)\binom{n}{7}/\binom{k}{7} = 12271512.$$

We picked z to have four distinct values $\alpha, \beta, \gamma, \delta$ to give enough degrees of freedom 344 for it to satisfy the moment conditions of (2.3); that is, otherwise, we would not 345 have enough unknowns to satisfy the 7 equations above. The values $a \approx 0.41166$, 346 $b \approx 0.56810, c \approx 0.020241, d \approx 1.4709 \cdot 10^{-6}, \alpha \approx 4.8651, \beta \approx 9.6827, \gamma \approx 24.519, \beta \approx 0.020241, \beta \approx 0.02024, \beta \approx 0.02024$ 347 and $\delta \approx 130.90$ form a solution to this system. Hence, taking Ξ to be the distribution 348 that gives the vector \mathbf{z} with all entries equal to α , all entries equal to β , all entries 349 equal to γ , and all entries equal to δ with probabilities a, b, c, and d, respectively, we 350 find that Ξ satisfies the mixed moment conditions of Equation (2.3). Note that this is equivalent to simply letting Y be a random subset of points in X scaled by α, β, γ . 352 and δ , with probabilities a, b, c, and d, respectively. 353

We found a distribution in Example 1 that we may use to build a matrix B354 from A such that (2.5) holds, but only for the case that n = 49 and k = 7. We 355did so by looking for a distribution Ξ which gives a random vector z that can only 356 take the same value in all of its entries. For such distributions, the first equation of 357 (2.3) is automatically satisfied. Furthermore, we assumed Ξ is discrete, which yielded 358 a straightforward system of polynomial equations we could use to find Ξ from the 359 second equation of (2.3). 360

This construction naturally leads to two questions: first, can we use this technique 361 to find such a distribution for every n, k such that k|n? And second, will the support of 362 363 such a distribution take values that are "too large" to truncate κ in such a manner as to make (2.5) provide a meaningfully-small ϵ ? To answer these last two questions, we 364 365 prove the following proposition. It states that we may always find a distribution with nonnegative support satisfying (2.3), although further questions about its support 366 may be harder to answer. 367

PROPOSITION 2.4. Let $k, n \in \mathbb{N}$ such that k is odd and k|n. There exists a dis-368 tribution Ξ on the random variable $\mathbf{z} = (z_1, \ldots, z_k)$, with nonnegative support in each 369 coordinate, such that (2.3) holds for all nontrivial subsets $C \subseteq \{1, \ldots, n\}$ of cardinality 370 at most k-1. 371

Proof. If we restrict ourselves to the case that the support of Ξ takes the same 372 value in each coordinate, the moment conditions become equivalent to k prescribed 373 moment conditions for a univariate probability distribution Z with nonnegative sup-374

375 port:

385

386

376
$$\mathbb{E}(Z^r) = (k/n)\binom{n}{2} / \binom{k}{2} = \frac{\frac{k}{n}\binom{n}{l+1}}{\binom{k}{l+1}}, \quad l = 0, \dots, k-1.$$

This is the approach we had taken for specific values of k and n in Example 1 above. 377 378 (Note that these moment conditions are largely unrelated to any moment conditions we considered in Proposition 2.1.) But this is just the so-called Stieltjes moment problem, which is well-known to have a solution if certain moment matrices are positive 380 semidefinite and full-rank (or, equivalently, positive definite). For a complete treat-381 ment of this question and questions on related moment problems, see the treatise of 382 Curto and Fialkow on the subject [7, Theorem 5.3]. From that result, we see that 383 384 showing the Proposition comes down to showing that the Hankel matrices

$$H_{k,n} = \begin{bmatrix} \mu_0 & \mu_1 & \cdots & \mu_{(k-1)/2} \\ \mu_1 & \mu_2 & \cdots & \mu_{(k-1)/2+1} \\ \vdots & \vdots & \ddots & \vdots \\ \mu_{(k-1)/2} & \mu_{(k-1)/2+1} & \cdots & \mu_{k-1} \end{bmatrix} \text{ and}$$

$$H'_{k,n} = \begin{bmatrix} \mu_1 & \mu_2 & \cdots & \mu_{(k-1)/2} \\ \mu_2 & \mu_3 & \cdots & \mu_{(k-1)/2+1} \\ \vdots & \vdots & \ddots & \vdots \\ \mu_{(k-1)/2} & \mu_{(k-1)/2+1} & \cdots & \mu_{k-1} \end{bmatrix}$$

are positive definite, where $\mu_l = \frac{k}{n} \binom{n}{l+1} / \binom{k}{l+1}$ for $l = 0, \ldots, k-1$. We see this once we realize both $H_{k,n}$ and $H'_{k,n}$ as Gram matrices associated to linearly independent sets 387 388 of vectors in a Hilbert space. In particular, consider the space V of square-integrable 389 390 functions on the compact interval [0, 1] with respect to the Radon-Nikodym derivative functions on the compact interval [0, 1] with respect to the reacher tender theory in derivative $x^{n-k-1}(1-x)^{k+1}$. For $i = 0, \ldots, (k-1)/2$ define $v_i = \sqrt{n-k}(1/(1-x))^{i+1/2}$; and for $j = 0, \ldots, (k-1)/2 - 1$, define $w_i = \sqrt{n-k}(1/(1-x))^{i+1}$. Clearly, we have $v_i, w_j \in V$ for $i = 0, \ldots, (k-1)/2$ and $j = 0, \ldots, (k-1)/2 - 1$. Furthermore, the sets $\{v_i\}_{i=0}^{(k-1)/2}$ and $\{w_j\}_{j=0}^{(k-1)/2-1}$ are linearly independent, and we see that 391 392 393 394

395
$$\frac{1}{\frac{k}{n}\binom{n}{k}}\mu_{l} = \frac{1}{\frac{k}{n}\binom{n}{k}}\frac{\frac{k}{n}\binom{n}{l+1}}{\binom{k}{l+1}}$$
396
$$-\frac{1}{\binom{n}{k}}\frac{\binom{n}{k}}{\binom{n}{k}}$$

396

$$= \frac{\binom{n}{k}\binom{n-(l+1)}{k-(l+1)}}{\frac{(n-k)!(k-(l+1))!}{(n-(l+1))!}}$$

$$397 \qquad = \frac{(n-1)!(n-(l+1))}{(n-(l+1))}$$

398
$$= (n-k) \int_0^1 x^{n-(l+2)-(k-(l+1))} (1-x)^{k-l} dx$$

99
$$= \int_0^1 \left(\sqrt{n-k} \frac{1}{(1-x)^{i+1/2}} \right) \left(\sqrt{n-k} \frac{1}{(1-x)^{j+1/2}} \right) x^{n-k-1} (1-x)^{k+1} dx$$
90
$$= \langle v_i, v_j \rangle_V.$$

4

3

401 whenever i + j = l for l = 0, ..., k - 1. Hence, the Gram matrix $H_{k,n}$ associated to

This manuscript is for review purposes only.

 $\{v_i\}_{i=0}^{(k-1)/2}$ in V is positive definite. Similarly, 402

403
$$\frac{1}{\frac{k}{n}\binom{n}{k}}\mu_{l+1} = \int_0^1 \left(\sqrt{n-k}\frac{1}{(1-x)^{i+1}}\right) \left(\sqrt{n-k}\frac{1}{(1-x)^{j+1}}\right) x^{n-k-1}(1-x)^{k+1} dx$$
404
$$= \langle w_i, w_j \rangle_V$$

whenever i + j = l for $l = 0, \ldots, k - 2$, so $H'_{k,n}$ associated to $\{w_j\}_{j=0}^{(k-1)/2-1}$ in V is 405406 also positive definite. П

Here, we note two things: first, we assumed k is odd in showing the existence of 407 Ξ . The case when k is even is handled similarly, so we omit it for brevity. The 408 main theoretical difference is that we use Theorem 5.1 of [7] (and therefore that the 409distribution Ξ thus obtained is actually unique, but that is irrelevant for our examples) 410 instead of Theorem 5.3. Second, computing a distribution as in Example 1 may be no 411 small task for large values of k and may take a lot of computing power. Nevertheless, 412 since Ξ does not depend on the specific choice of κ as long as κ satisfies the condition 413 of Equation (2.4), we may precompute the values Ξ for each combination of values of 414 k, n. This is the "preprocessing step" alluded to in the introduction. 415

3. Numerical experiments. The last proposition thus completes an answer 416 for how, given $X = \{x_1, \ldots, x_n\}$ with $x_i \in U[0, 1]$ for $1 \le i \le n$ and $A = \kappa(X, X)$, we 417may design a framework for obtaining a matrix B such that Corollary 2.2 applies in 418 expectation. Namely, we will fix k and n, precompute Ξ as in Proposition 2.4 above, 419and then take $B = \kappa(Y, Y)$, where the $Y = \{y_1, \ldots, y_k\}$ is defined as in Proposition 2.3 420 using the distribution of Proposition 2.4. That is, Y is the set obtained by multiplying 421 a random subsample of X by a random scalar picked using Ξ . Because this way of 422423 obtaining Y is probabilistic and only guarantees moment matching in expectation, we thus need to find the average of the *j*th largest eigenvalue of *B*, for $1 \le j \le k$, 424 for a number of trials m of forming such matrices B. Even though Ξ depends on n 425and k, empirically m seems to depends on k alone. The average $\sigma_i(B)$ s should then 426 correspond to bounds for the k quantiles of the eigenvalues of A as in (2.1). First, we 427 look at the performance of this framework for Ξ as computed in Example 1 (that is, 428 429 we set n = 49 and k = 7):

EXAMPLE 2. Let n = 49, k = 7, d = 1, and $\kappa : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be defined by 430 $\kappa(x,y) = e^{-1000(x-y)^2}$. Since n is so small in this case, we perform 10 trials of 431 forming A = (X, X) and average the *j*th largest eigenvalue for $1 \leq j \leq n$. We 432then perform m = 256000 trials of forming B = (Y, Y) according to the scheme in 433 Proposition 2.3 using the distribution from Proposition 2.4, and we average the jth 434435 largest eigenvalue thus obtained for $1 \leq j \leq k$. The resulting averaged eigenvalues of A are plotted in Figure 3.1, along with the eigenvalue quantile bounds obtained from the 436 averaged eigenvalues of B. (We repeat each eigenvalue of B 49/7 = 7 times in order 437 to better visualize the quantile bounds given for the eigenvalues of A in Corollary 2.2, 438as in Figure 2.1.) 439

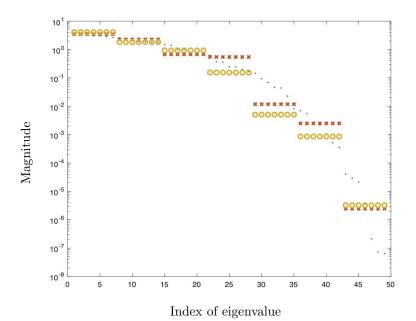


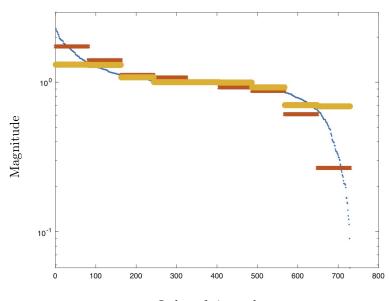
FIG. 3.1. The averaged eigenvalues of A (blue dots) together with the repeated, averaged eigenvalues of B (red crosses and yellow circles), formed as in Example 2. Two averages over m = 256000

runs of finding B are shown, illustrating the variation inherent to our framework.

Note the length scale of κ : setting κ to have such quick decay away from the 440 diagonal seems to be necessary to have a meaningful correlation between the quantile 441 bounds obtained from the eigenvalue distribution of B for the eigenvalue distribution 442 of A. We will see in Example 5 what happens with our framework if this is not the 443 444 case. Also, as we noted in Section 1, setting d = 1 as in Example 2 obviates the need for our approximation, since the resulting matrix A may be approximated for 445our choice of Gaussian kernel using a banded matrix. Therefore, it may be more 446 illustrative to set d to something larger than one to better showcase the strengths of 447 the framework. We do so in the next two examples. 448

EXAMPLE 3. We set n = 729, k = 9, d = 3, and $\kappa : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ be defined by 449 $\kappa(\mathbf{x},\mathbf{y}) = e^{-500(|\mathbf{x}-\mathbf{y}|)^2}$. As before, we perform 10 trials of forming A = (X,X) and 450average the jth largest eigenvalue for $1 \leq j \leq n$. We perform m = 128000 trials of 451forming B = (Y, Y) as in the previous examples and average the *j*th largest eigenvalue 452thus obtained for $1 \leq j \leq k$. The resulting averaged eigenvalues of A are plotted 453in Figure 3.2, along with the eigenvalue quantile bounds obtained from the averaged 454eigenvalues of B. (As before, we repeat each eigenvalue of B 729/9 = 81 times in 455order to visualize the quantile bounds given for the eigenvalues of A in Corollary 2.2.) 456457

In this previous example, setting d equal to 3 means that it is impossible to approximate A by a (singly) banded matrix. We will continue showing the efficacy of our framework for points X with an even higher dimension in the next example. Finally, we note that the kernel used does not have to have any particular form (i.e. we take κ to be the Cauchy kernel instead of the Gaussian kernel), as long as the steep decay away from the diagonal is maintained.



Index of eigenvalue

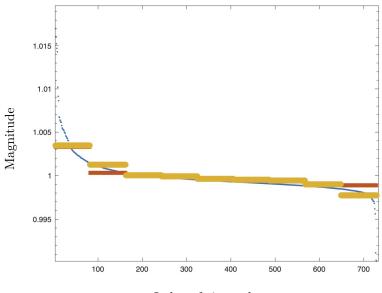
FIG. 3.2. The averaged eigenvalues of A (blue dots) together with the repeated, averaged eigenvalues of B (red crosses and yellow circles), formed as in Example 3. Two averages over m = 128000 runs of finding B are shown, illustrating the variation inherent to our framework.

EXAMPLE 4. We set n = 729, k = 9, d = 6, and $\kappa : \mathbb{R}^7 \times \mathbb{R}^7 \to \mathbb{R}$ be defined 464 by $\kappa(\mathbf{x}, \mathbf{y}) = 1/(1 + 10000(|\mathbf{x} - \mathbf{y}|)^2)$. As before, we perform 10 trials of forming 465 A = (X, X) and average the *j*th largest eigenvalue for $1 \leq j \leq n$. We perform 466 m = 128000 trials of forming B = (Y, Y) and average the *j*th largest eigenvalue 467 thus obtained for $1 \leq j \leq k$. The resulting averaged eigenvalues of A are plotted 468 in Figure 3.3, along with the eigenvalue quantile bounds obtained from the averaged 469eigenvalues of B. (We repeat each eigenvalue of B 729/9 = 81 times in order to 470visualize the quantile bounds given for the eigenvalues of A in Corollary 2.2.) 471

Finally, we will note what happens if the fast decay away from the diagonal in Equation (2.4) is not satisfied: in the next example, we set all parameters equal to those of Example 3, except the dimension of the points X is set to be 1 instead of 3.

475 EXAMPLE 5. Figure 3.4 shows what happens when the setup is kept exactly the 476 same as in Example 3, except for setting d = 1. Observe that there seems to be no 477 correlation whatsoever between the eigenvalues of B and quantile bounds for A, which 478 we may attribute to a lack of decay of κ away from the diagonal as required by (2.4). 479 (Note that A has low numerical rank here.)

We thus note here that, for higher dimensions, Examples 3 and 5 indicate that the length scale involved in κ does not have to be quite as small in higher dimensions as in does in lower dimensions for fast decay to be satisfied. This corresponds to the wellknown (but unintuitive) heuristic that unit balls in high dimension are "concentrated near the axes." This last example therefore also illustrates the limitations of our framework.



Index of eigenvalue

FIG. 3.3. The averaged eigenvalues of A (blue dots) together with the repeated, averaged eigenvalues of B (red crosses and yellow circles), formed as in Example 4. Two averages over m = 8000 runs of finding B are shown, illustrating the variation inherent to our framework.

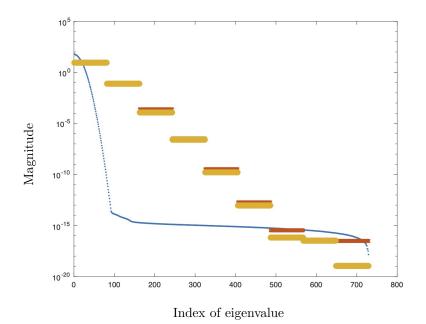


FIG. 3.4. The averaged eigenvalues of A (blue dots) together with the repeated, averaged eigenvalues of B (red crosses and yellow circles), formed as in Example 5. Two averages over m = 128000 runs of finding B are shown, illustrating the variation inherent to our framework.

4. Conclusion and future work. We have introduced a new framework that 486 487 aims to provide a way to approximate the eigenvalues of a kernel matrix evaluated at sets of n points X which come from standard uniform distributions on \mathbb{R}^d without 488 having to form the full kernel matrix itself. In particular, after fixing k, our framework 489provides bounds in expectation on the k spectrum quantiles of the kernel matrix A. 490Since we do not require forming the full matrix A, for $k \ll n$, this new framework 491 allows us to find such bounds in subquadratic time relative to n. In particular, it 492 requires $O(mk^2)$ steps, where m is the number of times we form B. However, our 493 work includes a number of limitations that we aim to overcome in the future. We go 494over these limitations one by one, and mention which directions to take to address 495them. 496

First, our work so far concerned only points which come from the uniform distribu-497 tion on \mathbb{R}^d . However, we may extend this work to consider any compactly-supported, 498absolutely continuous distribution Ω by composing κ with an appropriate coordinate 499transformation, which in turn may be obtained from the CDF of Ω . In doing so, 500for our framework to work, we must ensure that an analog of the condition of Equa-501502 tion (2.4) is adequately satisfied on this composition of functions. A future study of 503commonly-used distributions (for example, the multivariate normal distribution) will be useful in finding empirical and analytic evidence for when this is the case. 504

Second, the distribution Ξ provided by Proposition 2.4 seems to require a lot of 505trials of forming, finding the eigenvalues of, and then averaging B in order to get a 506 good approximation for the quantiles of A. In other words, the constant m is high, 507508even if it does not depend explicitly on n. This seems to be because the probabilities of some of the scalar multiples appear to be quite low in general. For example, in 509Example 1, we require each coordinate of x to be multiplied by $\delta = 130.90$ with 510probability $d = 1.4709 \cdot 10^{-6}$. Another disadvantage of Ξ from Proposition 2.4 is that precomputing the relevant values of \mathbf{z} and their probabilities is computationally expensive and becomes infeasible for large k. This distribution, however, is only one 513514 distribution that satisfies (2.3). We know from [7] that there is not even a unique discrete distribution satisfying Equation (2.3); furthermore, there may potentially be continuous distributions satisfying Equation (2.3) that are easier to compute with for 516 our purpose. Thus, we would like to know if such distributions exist which cause our 517quantile estimates to converge to their expectation with fewer trials than Ξ requires. 518If we obtain such distributions which require asymptotically fewer than $O(n^2)$ trials, 519we would be guaranteed to find bounds for the quantiles of the eigenvalues of A in 520 provably subquadratic time. Furthermore, the approach of [16] may allow us solve the 521moment problem for Ξ approximately and with less computational cost, and then to then find perturbative bounds from a "true solution" in the Wasserstein-1 distance. 523

524 In its present form, however, our work may already be applicable to the question of locally finding the so-called intrinsic dimension of data. Namely, the manifold hy*pothesis* in data science is that real-world data embedded in high-dimensional space, 526 such as collections of 64-by-64-pixel images with certain properties (for example, con-527 taining a dog) embedded in the space of all 64-by-64-pixel images, actually reside 528 on some kind of lower-dimensional manifold. Often, this is stated up to some perturbation from the addition of "noise." This idea, taken literally for the case of a 530 \mathcal{C}^2 -manifold, was tested in [10]. Less literal but more practical mathematical formula-531 tions of this idea of a "latent dimension" are explored in [17], as well as the resulting 532 estimates for each notion of dimension. 533

Here, we propose a new such formulation. Until now, we have not paid much attention to the parameter d used in the definition of the y_j 's in Proposition 2.3. However, this parameter is key to obtaining good quantile bounds for the kernel matrix A formed from X. See, for example, Figure 4.1 for the result of setting d = 2or d = 4 instead of d = 3 when forming B in the setup of Example 3.

Therefore, if we start with the collection of points X restricted to a small volume 539 V in \mathbb{R}^d and wish to find the (local) dimension of the piece of a manifold where 540that part of X "truly lives," as the manifold hypothesis stipulates, we can use our 541eigenvalue quantile estimation technique to see if we get accurate bounds after setting 542d to several candidate values. That is, we could sample e.g. n = 49 and k = 7 points 543 and sees which value of d works best to give quantile estimates. In doing so, we 544would be assuming that our points are "locally uniformly" distributed (i.e. uniform 545on an appropriate, small-enough chart of some manifold), and that the embedding 546547 generating X restricted to V guarantees that $\kappa(x, y)$ is far from 0 only for points x and y that are close within the latent manifold. In making these assumptions, this setup 548could effectively test a "local" manifold hypothesis. In addition, because of its locality, 549this notion of dimension is likely related to various existing k-nearest-neighbor-type 550estimators for intrinsic dimension [9].

Acknowledgements. The author sincerely thanks Levon Nurbekyan for his support and ideas related to the theoretical aspects of this work, as well as Yuanzhe Xi and Shifan Zhao for the overall direction of the work and several key observations motivating it.

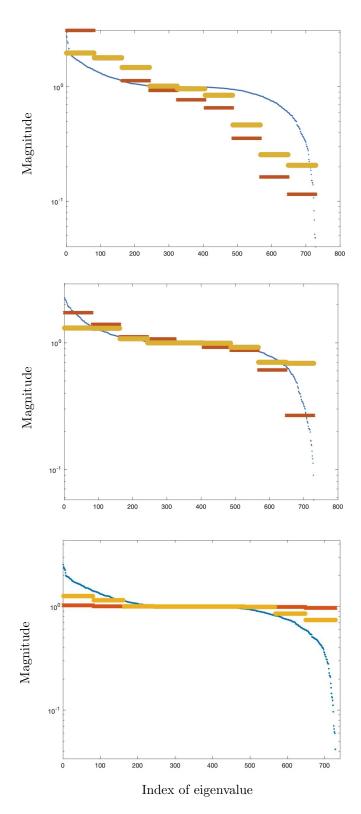


FIG. 4.1. Here, we reproduce Figure 3.2 of Example 3 as the middle figure, which shows good quantile estimates. In the top and bottom figures, our setup is exactly the same as in Example 3, except we set d = 2 (top figure) and d = 4 (bottom figure) when forming B. Since these are the wrong values of d, we get worse quantile estimates in the top and bottom figures.

REFERENCES

[1]	N. I. AKHIEZER The Classical Moment Problem and Some Related Questions in Analysis, 1st ed., Oliver & Boyd, Ltd., London, England, 1965.
[2]	A. BAKSHI, P. INDYK, P. KACHAM, S. SILWAL, AND S. ZHOU, Subquadratic algorithms for kernel matrices via kernel density estimation, preprint, arXiv:2212.00642v1 [cs.LG], 2022.
[3]	R. BHATTACHARJEE, G. DEXTER, P. DRINEAS, C. MUSCO, AND A. RAY Sublinear time eigenvalue approximation via random sampling, Algorithmica 86 (2024), pp. 1764–1829.
[4]	 M. BRAUN Accurate error bounds for the eigenvalues of the kernel matrix, J. Mach. Learn. Res. 7 (2006), pp. 2303–2328.
[5]	D. COHEN-STEINER AND W. KONG, C. SOHLER Approximating the spectrum of a graph, KDD '18: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Dis- covery and Data Mining (2018), pp. 1263–1271.
[6]	N. CESA-BIANCHI, Y. MANSOUR, AND O. SHAMR On the complexity of learning with kernels, Proceedings of Machine Learning Research 40 (2015), pp. 297-395.
[7]	R. E. CURTOW AND L. A. FIAKLOW Recursiveness, positivity, and truncated moment problems, Houston J. Math. 17(4) (1991), pp. 603–635.
[8]	P. DRINEAS AND M. W. MAHONEY On the Nyström method for approximating a Gram matrix for improved kernel-based learning, J. Mach. Learn. Res. 6 (2005), pp. 2153–2175.
[9]	E. FACCO, M. D'ERRICO, A. RODRIGUEZ, AND A. LAIO. Estimating the intrinsic dimension of datasets by a minimal neighborhood information, Sci. Rep. 7:12140 (2017).
[10]	C. FEFFERMAN, S. MITTER, H. NARAYANAN Testing the manifold hypothesis, J. Amer. Math. Soc. 29 (2016), pp. 983-1049.
[11]	P.N. GAVRILIADIS, G.A. ATHANASSOULIS Moment information for probability distributions, without solving the moment problem, II: Main-mass, tails, and shape approximation, J. Comput. Appl. Math. 229 (2009), pp. 7–15.
[12]	A. GITTENS AND M. W. MAHONEY Revisiting the Nyström method for improved large-scale machine learning, J. Mach. Learn. Res. 17 (2016), pp. 1–65.
[13]	G. H. GOLUB, C. F. VAN LOAN <i>Matrix Computations</i> , the Johns Hopkins University Press, Baltimore (1996), 3rd ed.
[14]	Y. JIN, C. MUSCO, A. SIDFORD, AND A. V. SINGH Moments, random walks, and limits for spectrum approximation, Proceedings of Machine Learning Research 195 (2023), pp. 1–22.
[15]	V. KOLTCHINSKII AND E. GINÉ Random matrix approximation of spectra of integral operators, Bernoulli, 6(1) (2000), pp. 113–167.
[16]	C. MUSCO, C. MUSCO, L. ROSENBLATT, A. V. SINGH Sharper bounds for Chebyshev moment matching with applications to differential privacy and beyond, pre-print.
[17]	P. POPE, C. ZHU, A. ABDELKADER, M. GOLDBLUM, AND T. GOLDBLUM, <i>The intrinsic dimension of images and its impact on learning</i> , ICLR 2021: 9th International Conference on Learning Representations (2021).
[18]	B. SCHÖLKOPF, A. J. SMOLA Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, The MIT Press, Cambridge (2001).
[19]	J. SHAW-TAYLOR, N. CRISTIANINI Kernel Methods for Pattern Analysis, Cambridge University Press, Cambridge (2004).
[20]	W. SWATSWORTH AND D. P. WOODRUFF Optimal Eigenvalue Approximation via Sketching, STOC 2023: Proceedings of the 55th Annual ACM Symposium on Theory of Computing (2023), pp. 145–155.
[21]	C. WILLIAMS AND M. SEEGER Using the Nyström method to speed up kernel machines, Advances in Neural Information Processing Systems 13 (2001), pp. 682–688.
[22]	D. P. WOODRUFF Sketching as a tool for numerical linear algebra, Found. Trends Signal Process. 10(1-2) (2014), pp. 1–157.

556 557

558 559

 $\begin{array}{c} 560 \\ 561 \end{array}$

 $\begin{array}{c} 562 \\ 563 \end{array}$

564

 $\begin{array}{c} 565\\ 566\end{array}$

 $\begin{array}{c} 567 \\ 568 \end{array}$

 $\begin{array}{c} 569 \\ 570 \end{array}$

 $\begin{array}{c} 571 \\ 572 \end{array}$

 $\begin{array}{c} 573 \\ 574 \end{array}$

 $575 \\ 576$

 $\begin{array}{c} 577\\578\end{array}$

579

580 581

582 583

 $\begin{array}{c} 584 \\ 585 \end{array}$

586

587

588 589

590 591

592

 $\begin{array}{c} 593 \\ 594 \end{array}$

595 596

597 598

599

600 601

602 603