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Abstract. For some kernel matrices, low-rank approximations can be quickly obtained via4
analytic techniques. One important class of analytic methods is based on the use of proxy points.5
Accuracy analysis for various proxy point methods has often been heuristic in nature, other than6
for certain special kernels. For more general cases, the methods lack an explicit number or location7
of proxy points required to yield a particular approximation accuracy. In this work, we carry out8
new analysis of a proxy point method that is applicable to general complex-analytic kernels. An9
intuitive way of choosing proxy points is used to show explicit error bounds. Such bounds decay10
exponentially with regard to the number of proxy points. This also leads to convenient estimates of11
numerical ranks of relevant kernel matrices. To showcase the utility of this new analysis, we apply12
it to design a new sublinear-time hierarchically semiseparable approximation method for certain13
Toeplitz matrices, including ones that frequently arise from real-world applications. This allows, for14
example, inversion of such matrices with lower computational complexity compared with existing15
direct methods. Some extensions of these ideas are also discussed.16

Key words. kernel matrix, proxy point method, approximation error, rank-structured matrix,17
Toeplitz matrix, sublinear complexity18

AMS subject classifications. 65E99, 65F55, 65G9919

1. Introduction. Low-rank matrix approximation is a common task in many20

areas of mathematics, computation, and engineering. By a low-rank approximation21

of an m × n matrix A, we mean a decomposition A ≈ UV T , such that the column22

size of U is much smaller than m and n, and such that the approximation satisfies a23

certain accuracy requirement. Such an approximation allows even very large matrices24

to be represented, up to a certain accuracy, by matrices on which operations may25

be carried out significantly faster. Broadly speaking, we may divide (deterministic)26

low-rank approximation techniques into two classes: algebraic methods and analytic27

methods. Examples of algebraic methods include truncated SVDs and rank-revealing28

QR factorizations. Such methods are applicable to any matrix but are typically29

too slow to apply to large matrices. Examples of analytic methods include Taylor30

series expansions, interpolations, and proxy point methods. Such methods can be31

typically applied with little or essentially no computational cost, but require the32

matrix under consideration to be a kernel matrix defined by a kernel with desirable33

analytic properties.34

In this work, we focus on one proxy point method which uses a set of proxy points35

to quickly construct basis matrices in low-rank approximations of kernel matrices. The36

root of this idea may be traced back to the fast multipole method (FMM) [6] and37

its variants [16, 29]. The error introduced by an analytic low-rank approximation is38

governed by analytic properties of the kernel in question. For proxy point methods,39

most accuracy analysis has relied on heuristics, arguing exponential convergence in40

the number of proxy points. Such analysis may be found in [15, 29, 13]. This is41

contrasted with the type of analysis carried out for the proxy point method in [28],42

which relates the number and location of proxy points to accurate error bounds of43
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2 PROXY POINT METHOD ANALYSIS AND APPLICATIONS

the low-rank approximation of the kernel matrix. However, the analysis in this last44

reference is only applicable to kernels of the form k(x, y) = 1/(x − y)d for x, y ∈ C45

and some d ∈ N.46

Here, we generalize this latter type of analysis to any one-dimensional complex-47

analytic kernel, bounding the errors of the proxy point method. Since for well-48

separated sets, many commonly-used kernels are complex-analytic in each variable49

on a region containing the set (holding the other variable constant), this analysis ap-50

plies widely to one-dimensional kernels. We also show that, if such a kernel satisfies51

a certain univalence criterion, we may select proxy points like in [28] so as to get52

a rigorous accuracy bound that decays exponentially with respect to the number of53

proxy points. This also yields a convenient numerical rank estimate for the associated54

kernel matrix.55

In addition to its theoretical utility, such analysis is useful, for example, when56

performing interpolative decompositions [14] of matrices using function approximation57

by a proxy point method. In [27], for example, even though the error introduced in58

the function approximation step is used to provide a bound for the error incurred59

in the interpolative decomposition step, the function approximation error is not itself60

studied. In this way, we hope that this work helps to fill gaps in the existing literature61

on proxy point methods.62

As another illustration of the utility of this analysis, and following our work in [12],63

we introduce a new sublinear-time hierarchically semiseparable (HSS) approximation64

algorithm for certain Toeplitz matrices arising from univalent maps applied to regular65

grids. Such matrices appear, say, as covariance matrices of Gaussian processes like in66

[30]. A general overview of fast direct computations with Gaussian process covariance67

matrices is given in [1]. In this context, the kernel matrix is obtained from applying a68

given positive-definite kernel to a regular 1-dimensional grid. Existing rank-structured69

(HSS or similar) approximation construction schemes for such matrices carry at least70

O(n) costs [1, 2, 26], so our scheme represents a substantial speedup over existing71

methods.72

Additionally, we propose an extension of the ideas to kernels of dimension greater73

than one. We also verify that our proxy point approximation error bounds are illus-74

trative of real-world performance by carrying out several numerical tests. Tests on the75

accuracy bounds for the proxy point low-rank approximation applied to different sets76

of points and kernels are given. We also carry out tests of the above HSS compression77

scheme applied to specific matrices.78

The rest of this paper is structured as follows. In Section 2, we go over the proxy79

point method and perform the new proxy point error analysis for general complex-80

analytic functions. We also show how to use this analysis to guarantee the efficacy of81

proxy point approximations to some Toeplitz matrices. In Section 3, we review HSS82

matrix approximation. The HSS construction algorithm for the Toeplitz matrices83

under our consideration is detailed in Section 4. In Section 5, we perform some84

numerical tests. Finally, we suggest some extensions of this work in Section 6.85

Throughout the paper, we use the following notation.86

• Let c ∈ C and r > 0. Then B(c, r) denotes the open ball in C with center c87

and radius r, O(B(c, r)) denotes the set of holomorphic functions on B(c, r),88

and D denotes B(0, 1).89

• Let i ≤ j. Then {i : j} denotes the set {i, i+ 1, . . . , j}.90

• Let k : F ×G → C be a function and X ⊆ F, Y ⊆ G be totally-ordered finite91

subsets of size r and s, respectively. Then k(X,Y ) = (k (xi, yj))r×s means92

the r × s matrix with (i, j) entry k (xi, yj), where xi is the ith element of X93
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MIKHAIL LEPILOV AND JIANLIN XIA 3

and yj is the jth element of Y .94

• Let C be an m × n matrix and M ⊆ {1 : m}, N ⊆ {1 : n}. Then by AM×N95

we mean the |M | × |N | submatrix of A picked by the row index set M and96

column index set N .97

2. Accuracy analysis for the proxy point method. For a kernel matrix98

k(X,Y ) defined by the evaluation of a kernel function k(x, y) at two finite sets99

X,Y ⊆ C, the proxy point method is a simple yet powerful way for finding a low-rank100

approximation. The idea is to pick an appropriate set of proxy points Z ⊆ C based101

on ideas from, for example, potential theory, function interpolation, or an integral102

representation [11, 16, 27, 28, 29]. A low-rank approximation then carries the form103

(2.1) k(X,Y ) ≈ UV T , with V = k(Y,Z).104

(Alternatively, the form may be UV T with U = k(X,Z), depending on the context.)105

In particular, it is shown in [28] that one way of approximating k(x, y) = 1/(x− y)d,106

for d ∈ N, with an integral representation is to use the Cauchy integral formula. This107

would then allow us to take Z to be a set of quadrature points. In this work, we108

expand this idea to more general kernels.109

2.1. Accuracy of kernel function approximation. We follow the strategy110

of [28] but derive the approximation error results for general complex-analytic kernels111

k(x, y). Let D = B(c, r) and E = B(c,R) be open balls in C, with r < R. Let112

X = {xj}mj=1 ⊆ D and Y = {yj}nj=1 be finite sets, and let k : C × Y → C be a113

function such that, for each y ∈ Y , k(z, y) is an analytic function of z on E. Then,114

for each x ∈ X, y ∈ Y , by the Cauchy integral formula, we have115

(2.2) k(x, y) =
1

2πi

∫
C

k(ζ, y)

ζ − x
dζ,116

where C is the boundary of an open ball with center c and radius
√
Rr. See Figure 2.1.117

Here, we chose the radius
√
Rr heuristically from the study in [28] (that was conducted118

for a special kernel only). We will see shortly that precisely this choice of radius119

allows the analysis of this section to give a good accuracy bound for our proxy point120

approximation to k(x, y).121

X
∂D

∂E C

Fig. 2.1. The contour C (dashed), the finite set X, and the boundaries of the open balls
D and E. (The set Y is not pictured.) The shaded green region shows the disk F defined in
Proposition 2.1, which is a compact region where the maximum of k(z, y) (over all y ∈ Y ) determines
the approximation bound.
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4 PROXY POINT METHOD ANALYSIS AND APPLICATIONS

Using the trapezoidal rule with p points to approximate (2.2), we then have122

(2.3) k(x, y) =

√
Rr

p

p∑
j=1

(
1

zj − x

)(
ωjk(zj , y)

)
+ ϵ,123

where124

(2.4) zj = c+
√
Rrωj , ω = e

2πi
p ,125

and the termwise error ϵ ∈ C ideally has very small magnitude. The points zj will126

serve as our proxy points. That is, Z = {zj}pj=1 in (2.1). (2.3) provides a separable or127

degenerate expansion for k(x, y). Hence, in this setup, for the low-rank approximation128

(2.3), we take129

U = −
√
Rr

p

(
ωj

xi − zj

)
m×p

=
1

p

(
c− zj
xi − zj

)
m×p

, V = k(Y,Z).130

(Notice m = |X| and p = |Z|.) This yields a proxy point low-rank approximation to131

k(X,Y ).132

Note that in the setup for (2.2) above and in Figure 2.1, the geometric role of the133

set Y is not explicitly mentioned or shown, even though the exact locations of the134

points in Y are a key part of the analysis to follow. Indeed, in the existing literature,135

Y is typically assumed to be well separated from X and the distance between X and136

Y is used for certain bounds or heuristics [12, 28]. Here, the geometric information137

of the set Y factors into the above by determining the domain of analyticity (in z)138

of k(z, y), which in turn determines R and r, given c. It also determines the disk139

F , shown in Figure 2.1 and used in to quantify the growth of k in the bound of140

Proposition 2.1.141

For example, consider k(x, y) = 1/(x − y) and c = 0. If the closest point to c in142

Y is yj = i(=
√
−1), then we may pick E = B(0, 1) and therefore obtain R = 1. On143

the other hand, if the closest point in Y to c is yj = 2, we may pick E = B(0, 2) and144

therefore R = 2. (r is chosen to be the smallest radius such that B(0, r) contains all145

the points in X. We will show in Proposition 2.1 that, if we maximize the ratio R/r,146

the analysis to follow provides the tightest proxy point approximation bound given a147

tame growth of k(z, y) in z on F , which matches the heuristic explored in [28].148

Our first goal is to find a bound for |ϵ| in (2.3). To do so, we give the following149

result. Its proof is based on classical techniques, including those for the proof of [18,150

Theorem 2.2], with some modifications for our context.151

Proposition 2.1. Let D = B(c, r) and E = B(c,R) be open balls in C, with152

r < R, and let X ⊆ D and Y be finite sets. Given p, let each zj for 1 ≤ j ≤ p be153

defined as in (2.4), and let k : C × Y → C be a function such that, for each y ∈ Y ,154

k(z, y) is an analytic function of z on E. Then for each x ∈ X, y ∈ Y , we have155

|ε| =

∣∣∣∣∣∣k(x, y)−
√
Rr

p

p∑
j=1

(
1

zj − x

)(
ωjk(zj , y)

)∣∣∣∣∣∣ ≤ α
maxz∈∂F |k(z, y)|
(R/r)

p/4 − 1
,156

where α = 2 (R/r)1/4

(R/r)1/4−1
and F = B(c, r (R/r)

3/4
).157
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MIKHAIL LEPILOV AND JIANLIN XIA 5

Proof. Fix x ∈ X and y ∈ Y . First, by the parametrization γ(t) = c+ eti
√
Rr of158

the contour C in (2.2), we may write159

k(x, y) =
1

2πi

∫ 2π

0

k(c+
√
Rreti, y)(i

√
Rreti)

c+
√
Rreti − x

dt.160

Define kx,y : B(0,
√
R/r) \ B(0,

√
r/R) → C by161

(2.5) kx,y(z) =
k(c+ z

√
Rr, y)(z

√
Rr)

c+ z
√
Rr − x

.162

Then163

(2.6) k(x, y) =
1

2πi

∫ 2π

0

kx,y(e
ti)ieti

eti
dt =

1

2πi

∫
γ0

kx,y(ζ)

ζ
dζ ≡ a0,164

where γ0 = eti and a0 denotes the 0th Laurent coefficient of kx,y.165

Consider the Laurent expansion of kx,y(z) at 0:166

(2.7) kx,y(z) =

∞∑
l=−∞

alz
l,167

which, by our assumption on k, is valid everywhere that kx,y is defined. We show that168

the sum of some Laurent coefficients |al| can be used to bound the error incurred in169

applying the trapezoidal quadrature rule to (2.6) as in (2.3). In fact, (2.3), (2.4), and170

(2.5) mean171

ε = k(x, y)− 1

p

p∑
j=1

kx,y(ω
j).172

For some steps below, we need a compact subregion on which the expansion (2.7)173

holds, because we will require absolute convergence, and because we will need to be174

able to bound certain quantities using values taken on its boundary. In particular,175

we define the compact annulus A = B
(
0, (R/r)1/4

)
\ B

(
0, (r/R)1/4

)
. The radii here176

are chosen to scale with R/r. (Note that taking the radii to be (R/r)s and (r/R)s177

for any s ∈ (1, 1/2) would work just as well, and it would just slightly alter the error178

bound). Now, since each ωj ∈ A and A is compact, we have179

1

p

p∑
j=1

kx,y
(
ωj
)
=

1

p

p∑
j=1

∞∑
l=−∞

alω
jl =

1

p

∞∑
l=−∞

al

p∑
j=1

ωjl =

∞∑
l=−∞

apl,180

where the last line follows from the fact that
∑p

j=1 ω
jl is p if l is a multiple of p and181

is 0 otherwise. Hence, by (2.6), we get182

(2.8) |ε| =

∣∣∣∣∣∣a0 −
p∑

j=1

1

p
kx,y

(
ωj
)∣∣∣∣∣∣ =

∣∣∣∣∣a0 −
∞∑

l=−∞

apl

∣∣∣∣∣ ≤
−1∑

l=−∞

|apl|+
∞∑
l=1

|apl| .183

Next, we bound the magnitude of the Laurent coefficient apl of kx,y using R, r, p,184

and the maximum of k over F = B(c, r (R/r)
3/4

). (Recall that F is the green shaded185
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6 PROXY POINT METHOD ANALYSIS AND APPLICATIONS

region in Figure 2.1.) To do so, note that kx,y(z) =
z−c
z−xk(

√
Rrz + c, y). Therefore,186

defining F ′ = F \ B
(
c, r(R/r)1/4

)
, we have187

max
z∈A

|kx,y(z)| =
(
max
z∈F ′

|(z − c)/(z − x)|
)(

max
z∈F ′

|k(z, y)|
)

188

=
r(R/r)1/4

r((R/r)1/4 − 1)
max
z∈F ′

|k(z, y)| = α

2
max
z∈F ′

|k(z, y)|.189

Hence, for each l ∈ Z with l ̸= 0, we have190

|al| ≤ max

(∣∣∣∣∣ 12π
∫
|ζ|=(R/r)1/4

kx,y(ζ)

ζl+1
dζ

∣∣∣∣∣ ,
∣∣∣∣∣ 12π

∫
|ζ|=(r/R)1/4

kx,y(ζ)

ζl+1
dζ

∣∣∣∣∣
)

191

≤ maxz∈A |kx,y(z)|(
(R/r)1/4

)|l| ≤ α

2

maxz∈F ′ |k(z, y)|(
(R/r)1/4

)|l|192

≤ α

2

maxz∈F |k(z, y)|(
(R/r)1/4

)|l| ≤ α

2

maxz∈∂F |k(z, y)|(
(R/r)1/4

)|l| ,193

where the last two inequalities follow from the maximum modulus principle and the194

fact that k(z, y) is holomorphic in z on E. Combining this with (2.8), we get195

|ε| ≤ α

2

(
2

∞∑
l=1

maxz∈∂F |k(z, y)|(
(R/r)1/4

)pl
)

= α
maxz∈∂F |k(z, y)|
(R/r)p/4 − 1

.
196

For a thorough discussion of similar bounds, see [18]. However, note that the197

bounds given there and elsewhere in the numerical analysis literature do not simulta-198

neously and explicitly bound the proxy point error for all values of an enclosed set X199

for each y ∈ Y . Hence, we may use our new result to bound the entrywise error for a200

kernel matrix. This feature will allow us to use this bound to guarantee applicability201

of the HSS construction method in Sections 4.1 and 4.2. This proof also provides202

justification for the heuristic, noted above and shown in [28] for the Cauchy kernel,203

that in the setup of this section we should pick C to have radius
√
Rr.204

2.2. Accuracy for kernel matrix low-rank approximations. The termwise205

error bound for each element k(x, y) allows us to obtain an absolute 2-norm error206

bound for the approximation to the matrix k(X,Y ). Furthermore, if k satisfies a207

univalence condition, we may obtain a relative 2-norm error bound for the matrix208

k(X,Y ) that guarantees exponential convergence in the number of proxy points.209

Proposition 2.2. Let D,E,X, Y, r,R, k, F, α, and each zj for 1 ≤ j ≤ p be as in210

Proposition 2.1, and define211

U =
√
Rr


1

z1−x1

1
z2−x1

· · · 1
zp−x1

1
z1−x2

1
z2−x2

· · · 1
zp−x2

...
...

. . .
...

1
z1−xl

1
z2−xl

· · · 1
zp−xl

 diag(ω, ω2, . . . , ωp),212

V =


k (y1, z1) k (y2, z1) · · · k (ym, z1)
k (y1, z2) k (y2, z2) · · · k (ym, z2)

...
...

. . .
...

k (y1, zp) k (y2, zp) · · · k (ym, zp)

 ,213
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where x1, . . . , xl are the elements of X and y1, . . . , ym are the elements of Y . Then214

(2.9)
∥∥k(X,Y )− UV T

∥∥
2
≤ lmα

maxy∈Y,z∈∂F (k(z, y))

(R/r)p/4 − 1
.215

Furthermore, if in addition, l ≥ 2, c is one of the points in X, and if k(z, y) is216

bounded and univalent as a function of z on E for each y ∈ Y , then217 ∥∥k(X,Y )− UV T
∥∥
2

∥k(X,Y )∥2
≤ lm(1 + αβ)

(R/r)p/4 − 1
,218

where β = (R/r)3/4
(

1+(r/R)
1−(r/R)1/4

)2
.219

Proof. The first result is obvious, since by Proposition 2.1,220

(2.10)
∥∥k(X,Y )− UV T

∥∥
2
≤
∥∥k(X,Y )− UV T

∥∥
F
≤ lmα

maxy∈Y,z∈∂F (k(z, y))

(R/r)p/4 − 1
.221

To see the second result, we first bound the function maximum on the right-hand222

side of (2.10). The condition that k(z, y) is univalent in z on E allows us to bound its223

growth away from c by the distance from c. In particular, we use the growth theorem224

for univalent maps on the unit disk that take the value 0 and have derivative equal to225

1 at the origin; such maps are called regular univalent maps. We define a regular map226

gy(z) on the unit disk that takes values related to k(z, y), use the growth theorem to227

bound its growth away from 0, and then use this to bound the growth of k(z, y) away228

from c. More precisely, for each y ∈ Y , define the functions fy, hy, gy : D → C by229

fy(z) = k(z, y),230

hy(z) = Rz + c, and231

gy(z) =
(fy ◦ hy) (z)− (fy ◦ hy) (0)

(fy ◦ hy)
′
(0)

,232

respectively. Then each gy is regular and univalent, so by the growth theorem, we233

have |z|
(1+|z|)2 ≤ |gy(z)| ≤ |z|

(1−|z|)2 . Thus, for z ∈ D,234

(2.11)
|z|
∣∣(fy ◦ hy)

′
(0)
∣∣

(1 + |z|)2
≤ |(fy ◦ hy) (z)− (fy ◦ hy) (0)| ≤

|z|
∣∣(fy ◦ hy)

′
(0)
∣∣

(1− |z|)2
.235

Therefore, from the second inequality of Equation (2.11), for z ∈ ∂B
(
0, (r/R)1/4

)
, we236

have237

|(fy ◦ hy) (z)| ≤
|z|
∣∣(fy ◦ hy)

′
(0)
∣∣

(1− |z|)2
+ |(fy ◦ hy) (0)|238

≤ (r/R)1/4

(1− (r/R)1/4)2

∣∣(fy ◦ hy)
′
(0)
∣∣+ |(fy ◦ hy) (0)|239

=
(r/R)r1/4

(1− (r/R)1/4)2

∣∣f ′
y(c)h

′
y(0)

∣∣+ |fy(c)|240

≤ (r/R)1/4

(1− (r/R)1/4)2

∣∣f ′
y(c)

∣∣ ∣∣h′
y(0)

∣∣+ |fy(c)|241

=
R3/4r1/4

(1− (r/R)1/4)2

∣∣f ′
y(c)

∣∣+ |fy(c)| ,242
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8 PROXY POINT METHOD ANALYSIS AND APPLICATIONS

so |k(z, y)| ≤ R3/4r1/4

(1−(r/R)1/4)2
|kz(c, y)| + |k(c, y)| for all z ∈ ∂F and y ∈ Y . (Here,243

kz(c, y) denotes the derivative of k(z, y) as a function of z evaluated at c.) Defining244

γ = 1
(R/r)p/4−1

, we thus have by Equation (2.10) that245

∥k(X,Y )− UV ∥2
∥k(X,Y )∥2

≤ lmγ

maxy∈Y

(
R3/4r1/4

(1−(r/R)1/4)2
|kz(c, y)|+ |k(c, y)|

)
∥k(X,Y )∥2

246

≤ lmγ

maxy∈Y

(
R3/4r1/4

(1−(r/R)1/4)2
|kz(c, y)|+ |k(c, y)|

)
∥k(X,Y )∥1

247

= lmγ

maxy∈Y

(
R3/4r1/4

(1−(r/R)1/4)2
|kz(c, y)|+ |k(c, y)|

)
maxy∈Y

(∑l
j=1 |k(xj , y)|

)
 .(2.12)248

Now, from the first inequality of Equation (2.11) and the fact that l ≥ 2 and c = xj0249

for some 1 ≤ j0 ≤ l, there exists a 1 ≤ j1 ≤ l such that xj1 is a distance r away from250

xj0 . Hence, by the triangle inequality applied to (fy ◦ hy)(xj0), (fy ◦ hy)(xj1), and 0,251

we know since (r/R)R|kz(c,y)|
1+(r/R)2 ≤ |k(xj1 , y)− k(xj1 , y)| that252

(2.13) (1/2)
r |kz(c, y)|

(1 + (r/R)2)
≤ max(|k(xj1 , y)| , |k(xj2 , y)|).253

In particular, we then have the following bound on the denominator of (2.12):254

(2.14) max
y∈Y

(
max

(
|k(c, y)| , (1/2) r |kz(c, y)|

(1 + (r/R)2)

))
≤ max

y∈Y

 l∑
j=1

|k(xj , y)|

 .255

Let y0 = argmaxy∈Y

(
R3/4r1/4

(1−(r/R)1/4)2
|kz(c, y)|+ |k(c, y)|

)
. Combining (2.12), (2.13),256

and (2.14), we thus have257 ∥∥k(X,Y )− UV T
∥∥
2

∥k(X,Y )∥2
≤ lmγ

 R3/4r1/4

(1−(r/R)1/4)2
|kz(c, y0)|+ |k(c, y0)|

max
(
|k(c, y0)| , (1/2) r|kz(c,y0)|

(1+(r/R)2)

)
258

≤ lmγ

 R3/4r1/4

(1−(r/R)1/4)2
|kz(c, y0)|

(1/2) r|kz(c,y0)|
(1+(r/R)2)

+
|kz(c, y0)|
|kz(c, y0)|

259

= lmγ(1 + αβ).260

The result then follows by our definition of γ.261

Hence, for a given 2-norm tolerance τ of the proxy point approximation to262

k(X,Y ), we only need to use O (log lm+ log τ) proxy points, as long as the assump-263

tion on the analyticity of k holds, and as long as k grows sub-exponentially on the264

relevant domains. For a lot of functions k, this growth condition is not satisfied, and265

it is unclear a priori when the growth of k may be tame enough for Equation (2.9) to266

allow the feasibility of the proxy point method. But if k satisfies a certain univalence267

condition, then Proposition 2.2 guarantees slow growth and hence a relative error268

bound for the approximation to k(X,Y ) that decreases exponentially in the number269

of proxy points p.270

This manuscript is for review purposes only.



MIKHAIL LEPILOV AND JIANLIN XIA 9

2.3. Application: approximating some Toeplitz matrices. As a specific271

application of this, which we develop further in Section 4, we show that some off-272

diagonal blocks of Toeplitz matrices with certain kinds of Toeplitz vectors can be273

approximated efficiently by the proxy point method. To do so, we assume without274

loss of generality that n is divisible by 8. (This is purely for convenience of notation275

and is not a restriction on the applicability of the main ideas.) Let276

(2.15) T =


t0 t−1 . . . t−(n−1)

t1 t0 . . . t−(n−2)

...
...

. . .
...

tn−1 tn−2 . . . t0

 ,277

be an n × n real- or complex-valued Toeplitz matrix whose entries are ti = f1(i)278

for −n ≤ i ≤ −1 and ti = f2(i) for 1 ≤ i ≤ n, where f1 ∈ O (B (−n/2, n/2)) and279

f2 ∈ O (B (n/2, n/2)) are univalent. Such matrices occur in [3, 20], as well as in the280

Gaussian process literature mentioned in the introduction [1]. In [3], for example,281

f1, f2 are defined by −f1(z) = f2(z) = (1− z) log ((z − 1)/z) + (z+1) log (z/(z + 1)).282

Other commonly-used kernels that are univalent on the relevant domain include the283

Cauchy kernel and the Gaussian kernel with “large” (in this context, O(n)) length284

scale.285

We may consider, for example, a certain off-diagonal block of T to be a kernel286

matrix corresponding to the kernel k(x, y) = f2(x− y):287

T[n/2+n/4+1,n−n/4]×[1,n/2] = k(X,Y ),288

where X = [n/2 + n/4 + 1, n − n/4] and Y = [1, n/2]. By our assumption on f2, we289

are able to use the proxy point method with center 3n/4 and radius n/(4
√
2) to get290

an approximation for k(X,Y ). Note that here, R = n/2 and r = n/4, so R/r = 2.291

Ensuring this separation between X and Y , and hence the analyticity of f2, is the292

reason why we did not pick X = [n/2 + 1, n] and attempt to approximate the entire293

bottom-left subblock of T . Using Equation (2.9), together with the function bound294

in Proposition 2.3 below, guarantees that we would need O(log n) proxy points to get295

a given approximation accuracy for large n.296

Proposition 2.3. Let f be holomorphic, bounded, and univalent on B (n/2, n/2).297

Then for z ∈ ∂B ((n+ 1)/2, n/2− 1),298

|f(z)| ≤ (n/2)
3 |f ′ (n/2)|+ |f (n/2)| .299

Proof. This is an adaptation of the proof of Proposition 2.2; we modify it here300

to explicitly relate n to the case of the Toeplitz matrix above. Define the functions301

h : D → C and g : D → C302

h(z) = (n/2) z + n/2, and303

g(z) =
(f ◦ h) (z)− (f ◦ h) (0)

(f ◦ h)′ (0)
.304

Then g is schlicht, so by the growth theorem, we have |g(z)| ≤ |z|
(1−|z|)2 . Thus, for305

z ∈ ∂B
((

2
n

)
n+1
2 ,
(
2
n

) (
n
2 − 1

))
,306

|(f ◦ h) (z)− (f ◦ h) (0)| ≤
|z|
∣∣(f ◦ h)′ (0)

∣∣
(1− |z|)2

.307
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10 PROXY POINT METHOD ANALYSIS AND APPLICATIONS

Therefore, we have308

|(f ◦ h) (z)| ≤
|z|
∣∣(f ◦ h)′ (0)

∣∣
(1− |z|)2

+ |(f ◦ h) (0)|309

≤ (n/2)
2 ∣∣(f ◦ h)′ (0)

∣∣+ |(f ◦ h) (0)|310

= (n/2)
2 |f ′ (n/2)h′(0)|+ |f (n/2)|311

≤ (n/2)
2 |f ′ (n/2)| |h′(0)|+ |f (n/2)|312

= (n/2)
2
(n/2) |f ′ (n/2)|+ |f (n/2)| ,313

so the result follows from the definition of h.314

Plugging the above bound into Equation (2.9) and using the fact that, in this315

case, R/r = 2, we get the following bound for the 2-norm error incurred using a proxy316

point approximation k(X,Y ) ≈ UV with p points:317

∥k(X,Y )− UV ∥2 ≤
(
n2/8

)( 25/4

21/4 − 1

)(
1

2p/4 − 1

)(
(n/2)

3 |f ′(n/2)|+ |f(n/2)|
)
.318

Therefore, a given error tolerance requires O(log n) proxy points. In the following two319

sections, we further develop this idea to construct an HSS approximation to T with320

a computational cost that is sublinear in n.321

3. Review of HSS matrix approximation. Next, we review the data struc-322

ture known as a hierarchically semiseparable (HSS) matrix form. Here we only give323

a brief outline; more details can be found in [25].324

Definition 3.1. Let M be a matrix. Assume without loss of generality that M325

is square with row/column size n equal to a power of two, and let L < log2(n).326

Recursively partition in two the set of row/column indices of M for a total of 2L − 1327

subsets. Specifically, for each 0 ≤ l ≤ L, partition [1 : n] into the 2l sets328

Il =
{[

1 :
n

2l

]
,
[ n
2l

+ 1 :
n

2l−1

]
, . . . ,

[
(2l − 1)

n

2l
+ 1 : n

]}
.329

Let I =
⋃L

j=0 Il, and impose a partial order on I by set inclusion. We call I the330

L-level HSS index set of M . Then its Hasse diagram T is a perfect binary tree,331

called the HSS tree of M . Now, for each 1 ≤ j ≤ 2L − 1, define ij ∈ I to be the332

element corresponding to the jth vertex of T in its postordered traversal. For each333

1 ≤ j ≤ 2L − 1, define M−
j = Mij×[1:n]\ij and M

|
j = M[1:n]\ij×ij ; these are called334

the jth HSS block row and jth HSS block column, respectively. (See Figure 3.1335

for an example when L = 2.) The HSS rank of M is the maximum rank, over all336

1 ≤ j ≤ 2L − 1, of M−
j and M

|
j.337

An L-level HSS form for M is a 6-tuple {D,U,R,V,W,B}, where:338

• U = {Uj}1≤j≤2L−2, V = {Vj}1≤j≤2L−2, and B = {Bj}1≤j≤2L−2 are sets of339

matrices;340

• D = {Dj}j∈I is a set of matrices, where I is the set of postordered indices of341

leaves of T ;342

• and R = {Rj}j∈J and W = {Wj}j∈J are sets of matrices, where J is the set343

of postordered indices of vertices of T of depth at least two;344

such that345

1. Dj = Mij×ij for j ∈ I;346
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A−
1

A−
2

A−
4

A−
5

A−
3

A−
6

A
|
5

A
|
4

A
|
2

A
|
1

A
|
6

A
|
3

(a) HSS block rows (b) HSS block columns

Fig. 3.1. The HSS block rows and columns of M where L = 2. The labeled green blocks with
rounded corners correspond to the HSS tree depth l = 1; the labeled yellow blocks with sharp corners
correspond to the HSS tree depth l = 2.

2. Mij×isib(j)
= UjBjV

T
sib(j) for 1 ≤ j ≤ 2L − 2, where Bj is full-rank and sib(j)347

is the postordered index of the sibling of j;348

3. and Uj =

(
Uc1(j)Rc1(j)

Uc2(j)Rc2(j)

)
and Vj =

(
Vc1(j)Wc1(j)

Vc2(j)Wc2(j)

)
for 1 ≤ j ≤ 2L − 2, where349

c1(j) and c2(j) denote the postordered indices of the left and right children of350

the postordered jth vertex of T , respectively.351

Collectively, all of the matrices mentioned in this definition are called HSS generators352

of M . Note that we can find generators whose sizes can all be bounded by the HSS353

rank of M [25]; this is the main point constructing the HSS form of M and the reason354

for the efficiency of HSS algorithms. Figure 3.2 illustrates the various relationships of355

the HSS generators of M .356

U1B1V
T
2

U2B1V
T
1

U5B5V
T
4

U4B4V
T
5

U3B3V
T
6

U6B6V
T
3

D1

D2

D4

D5

U1B1V
T
2D1

D2

D4

D5

U1R1B3W
T
4 V

T
4 U1R1B3W

T
5 V

T
5

U2R2B3W
T
5 V

T
5U2R2B3W

T
4 V

T
4

U5R5B6W
T
2 V

T
2

U4R4B6W
T
2 V

T
2U4R4B6W

T
1 V

T
1

U5R5B6W
T
1 V

T
1

U2B2V
T
1

U5B5V
T
4

U4B4V
T
5

Fig. 3.2. The HSS generator products of M placed into the blocks of M that they generate.

Finally, we say M has numerical HSS rank k with respect to a tolerance τ if the357

numerical rank of M−
j and M

|
j with respect to a tolerance τ is at most k over all358

1 ≤ j ≤ 2L − 1. We define an L-level rank-k HSS approximation of M to be an359
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12 PROXY POINT METHOD ANALYSIS AND APPLICATIONS

L-level HSS form of M where we replace condition 2 in Definition 3.1 above with the360

following:361

2′ Mij×isib(j)
≈ UjBjV

T
sib(j) for 1 ≤ j ≤ 2L − 2, where Bj is a k × k matrix.362

In the case that M is a Toeplitz matrix, for 1 ≤ j ≤ 2L − 2, existing methods of363

constructing any one of Uj , Vj , Rj , Wj , or Bj in general scale linearly in n, for at364

least some j.[22] In the next section, we outline an algorithm to construct any such365

generator with sublinear cost. This is useful depending on how the HSS form of M366

is subsequently used. For example, our method confers a speedup if only part of the367

output of a matrix-vector multiplication with M is needed.368

4. Sublinear Toeplitz kernel HSS generator construction. In this section,369

we detail our sublinear HSS construction algorithm for Toeplitz matrices arising from370

univalent maps applied to a regular grid in one dimension. The combination of ideas371

necessary for this method was first explored in [12]. The approximation construction372

algorithm is detailed in 4.1 and 4.2. The analysis, started in Section 2, of the number373

of proxy points necessary for a good approximation is continued in 4.3.374

To understand the utility of the new scheme, it is worth briefly reviewing existing375

Toeplitz methods. Over the past six decades, many algorithms have been devised that376

exploit the additional structure of Toeplitz matrices to perform various matrix oper-377

ations faster than the counterpart “naive” algorithms applicable to general matrices.378

For example, so-called “fast” (faster than cubic time in the size of the matrix) and379

“superfast” (faster than quadratic time in the size of the matrix) algorithms have been380

devised to solve Toeplitz systems [9, 5, 7]. The central idea of such algorithms over the381

past few decades has become to apply fast Fourier transforms (FFTs) and solve the382

equivalent system in the frequency space. The resulting Cauchy-like matrix turns out383

to both be quickly solved by Gaussian elimination and to have low off-diagonal rank;384

hence, it can be quickly approximated by structured matrices [5, 17, 2]. Similarly, in385

digital signal processing, it has become well-known that the multiplication of Toeplitz386

convolution matrices with a given signal can be accelerated by applying FFTs and387

performing the equivalent operation in the frequency domain [10, 4].388

After certain speedups that may be obtained using randomized techniques, the389

dominant cost in such structured matrix frequency-domain Toeplitz solution and mul-390

tiplication algorithms becomes the application of FFTs [25, 14, 26]. Hence, in theory,391

general HSS algorithms can potentially achieve a speedup for matrix operations when-392

ever a matrix is both Toeplitz and has low off-diagonal rank before the application393

of FFTs [25]. In such algorithms, the dominant cost becomes the construction of the394

structured approximant; thus, bringing this cost down is a worthwhile endeavor. In395

this work, we show that for Toeplitz matrices whose Toeplitz vector is generated by a396

univalent map applied to the positive integers, we are able to reduce the HSS construc-397

tion time cost from O
(
r2n
)
[22, 23] to O

(
log5(n)

)
in the size n of a square matrix398

with off-diagonal rank bound r. While the new algorithm is less widely applicable,399

it may nevertheless be applied to certain important classes of matrices, such as those400

arising as covariance matrices of Gaussian processes [1, 30], or from a convolution of401

a digital signal with a large Gaussian filter [4]. In addition, since this new scheme402

does not rely on Fourier space representation, it has the advantage of preserving the403

rank structure of any diagonal or rank-structured summand that may be added to404

the Toeplitz matrix, such as when localizing eigenvalues [21, 19].405

The first key idea in our new construction scheme is the use of the proxy point406

method in the process of obtaining an interpolative decomposition (also known as407

skeletonization) of the HSS blocks, as was done previously in [15]. The second key408
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idea is the reuse of the resulting approximate basis matrix factors for all the HSS409

blocks at a given HSS depth, as was done previously in [12]. Here is where we use410

our new analysis from Section 2 to guide the process of obtaining these approximate411

basis factors, as well as to understand when the construction scheme is applicable.412

In the case that the proxy point method is used to approximate off-diagonal blocks413

of Toeplitz matrices with Toeplitz vector generated by a complex-analytic univalent414

map, this error is then shown to increase slowly enough in n to allow our construction415

algorithm to be performed in sublinear time relative to n. While we do not perform416

an operation count to justify this here, since our algorithm is almost identical to the417

one outlined in [12], the analysis from Section 5 of that paper applies to the algorithm418

outlined in this section.419

Let T be a Toeplitz matrix defined by the Toeplitz vector420

(t−(n−1), t−(n−2), . . . , t−1, t0, t1, . . . , tn−2, tn−1),421

as in Equation (2.15), and similarly define f1 and f2 as in Section 2. To more easily422

illustrate the application of this method, we will deal with the symmetric case t−i = ti423

(so f1(−i) = f2(i)) for i = 0, . . . , n − 1; define f(z) = f1(−z). The non-symmetric424

case is handled similarly (see Section 4.2). Since we are constructing generators for425

approximations to the off-diagonal blocks of T , we may again assume without loss of426

generality that t0 = 0. Furthermore, since this algorithm is meant to apply to large427

matrices, we may assume that n is a power of two greater than 8.428

4.1. Constructing the HSS row generators. Let L ≤ log2(n) − 2 be the429

number levels in the desired HSS approximation to T . Let r be a bound for the430

numerical HSS rank of T ; we assume specifically that r is O(log n). The analysis in431

Section 4.3 can actually be used to give a bound for r. In particular, we can show432

that r is O(log2 n); see Section 6.433

For each 1 ≤ i, j ≤ n with i ̸= j, we have Ti,j = f (|j − i|). Hence, we may434

consider an HSS block T−
j to be the kernel matrix k(ij , [1 : n] \ ij), where k is defined435

by k(x, y) = f(|x− y|). Directly finding a low-rank factorization for T−
j , for example436

as when j = 1 in the first step in the HSS construction algorithm in [25], is already437

prohibitively expensive with at least O(n) flops. Instead, we may follow a similar list438

of steps as in [12, Section 3.2]:439

• If j is not leaf of T , we assume we have performed this list of steps on its chil-440

dren c1(j) and c2(j) to obtain sets of indices i′c1(j), i
′
c2(j)

⊆ ij . If j is a leaf, we441

define c1(j) = c2(j) = j and i′j = ij . Then, we define i
′
j = i′c1(j)∪i

′
c2(j)

and ap-442

ply a proxy point approximation to
(
T−
j

)
i
′
j×[1:n−|ij |]

. However, since we only443

assumed that f is analytic on B (n/2, n/2), by Equation (2.9), the ratio R/r444

in this case could be as large 1/n, and therefore the number of proxy points445

p required to obtain a reasonably good approximation may be prohibitively446

large. Hence, we first separate ij into the “near-field” and “far-field” subsets447

îj and ĩj = ij \ îj , respectively, where îj is the subset of ij consisting of its448

first and last |ij |/4 values, respectively, ordered the usual way. We then define449

î′j = îj ∩ i
′
j , ĩ

′
j = ĩj ∩ i

′
j , T

−
j,1 = k

(̂
i′j , [1 : n] \ ij

)
, and T−

j,2 = k
(̃
i′j , [1 : n] \ ij

)
;450

and we apply a proxy point approximation to only the far-field subblock:451

T−
j,2 ≈ Ũj Ṽj . For this approximation, we use a circular contour with center452

(1/2) (min(ij) + max(ij)) and radius (
√
2/2) (max(ij)−min(ij) + 1) to ob-453

tain R/r = 2. (See Figure 4.1 and Figure 4.2.)454
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Im
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4i

8i

0

−4i

−8i
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Re
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4i

8i

0

−4i

−8i

Fig. 4.1. Top: near-field points ĩ′1 (◦), far-field points î′1 (•), proxy points (×), and the points

[9 : 32] (■) involved in the approximation of the leaf HSS block T−
1 |

i
′
1×[1:n−|i1|]

= k ([1 : 8], [9 : 32])

for a matrix of size n = 32, number of HSS levels L = 2, and number of proxy points p = 16.
Bottom: the resulting index set i′1 (□). (These are “cartoon illustrations” and are not actual results
from such an approximation applied to a subblock of an actual matrix T .)

We thus have455

(
T−
j

)
|i′j×[1:n−|ij |] = Πi

(
T−
j,1

T−
j,2

)
= Πi

(
I 0

0 Ũi

)(
T−
j,1

Ṽi

)
,456

where Πi is a permutation matrix.457

• Next, we find a strong rank-revealing QR factorization458

Ũj = U j

(
Π′T

j Ũj

)
|[1:r]×[1:p],459

where U j =
(
I Ej

)T
and Π′

j is a permutation matrix. In theory, any460

rank-revealing QR factorization may suffice, but in practice the SRRQR fac-461

torization results in greater numerical stability when working with Ej (and462

hence Uj); see [8] for details. We then have463

T−
j,2 ≈ U j

(
Π′T

j Ũj

)
[1:r]×[1:p]

Ṽj ≈ U j

(
Π′T

j T−
j,2

)
[1:r]×[1:n]\ij

,464

This manuscript is for review purposes only.



MIKHAIL LEPILOV AND JIANLIN XIA 15
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Fig. 4.2. Top: near-field points ĩ′3 (◦), far-field points î′3 (•), proxy points (×), and the points

[17 : 32] (■) involved in the approximation of height-2 HSS block T−
3 |

i
′
3×[1:n−|i3|]

= k(i
′
j , [17 : 32]) for

a matrix of size n = 32, number of HSS levels L = 2, and number of proxy points p = 16. Bottom:
the resulting index set i′3 (□). (As noted in Figure 4.1 above, these are “cartoon illustrations” and
are not reflective of actual numerical results.)

so465

(
T−
j

)
|i′j×[1:n−|ij |] ≈ Πj

(
T−
j,1

T−
j,2

)
466

≈ Uj

 (
ΠT

j T
−
j |i′j×[1:n]\ij

)
|[1:|̂i′j|]×[1:n−|ij |](

ΠT
j T

−
j |i′j×[1:n]\ij

)
|[|̂i′j|+1:|̂i′j|+r]×[1:n−|ij |]

467

= UjT
−|i′j×[1,n]\ij ,468

where i′j ⊆ ij is of size
∣∣∣̂i′j∣∣∣+ r and469

Uj = Πj

I 0

0 Π′
j

(
I
Ej

) .470

Now, if j is a leaf, this last display is precisely the HSS generator. If j is not a leaf,471

we set Rc1(j) = Uj |(i′j∩ic1(j))×[1:|i′j|+r] and Rc2(j) = Uj |(i′j∩ic2(j))×[1:|i′j|+r].472
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4.2. Constructing the remaining HSS generators. Now, note that for each473

j at the leaf level in T , each matrix
(
T−
j

)
(i′

c1(j)
∪i′

c2(j)
)×[1:n−|ij |]

used to obtain the474

generator Uj yields the same Uj regardless of the specific value of j. Hence, i′j is the475

same for any leaf-level j. Therefore we can show by induction on L that for each j476

at the same depth of T , Uj and i′j are the same. This shows that we only need to477

perform the above steps once at each depth of T to obtain all the HSS row generators478

Uj for a leaf-level j and Rj for j with depth(j) ≤ L − 2. Furthermore, because the479

above steps do not depend on the specific function k(x, y) = f(|x − y|) as long as480

f satisfies the analyticity condition, the above steps also construct the HSS column481

generators Vj and Wj . So, we set Vj = Uj for a leaf-level j and Wj = Rj for j with482

depth(j) ≤ L − 2. This last fact shows why our assumption that f1 = f2 at the483

beginning of this section confers no loss of generality. Finally, for each j ∈ T , we set484

Bj = Ti′j×i′
sib(j)

.485

So far, we have not mentioned how many proxy points are required for the far-field486

approximation at each level in the above construction method; we will explore this487

issue in the next section. We note here, however, that if the number of proxy points488

is O(log n), then the flop count of this method is the same as that of the method in489

[12], for a total of O(log5 n) flops. We will show that this is indeed the case in the490

next section whenever f satisfies the univalent condition in Proposition 2.3.491

4.3. Number of proxy points required. First, we fix some notation: let T , I492

be the HSS tree and HSS index set of T , respectively, and let j ∈ T have corresponding493

index set ij ∈ I. We define îj to be the subset of ij missing its least and greatest |ij |/4494

elements, ordered the usual way. We also define T̃ j,p
n to be the p-point proxy point495

approximation (in the first variable) to the subblock T |̂ij×[1:n]\ij = k(̂ij , [1 : n] \ ij)496

with center (1/2) (min(ij) + max(ij)) and radius (1/2) (max(ij)−min(ij) + 1).497

Next, we show with Example 1 that for general f ∈ O (B (n/2, n/2)), this ap-498

proximation need not have good convergence properties. This corresponds to the case499

that f grows rapidly away from n/2; this corresponds to the case that the function500

bound in Equation (2.9) is large.501

Example 1. For n ≥ 8, let Tn ∈ Rn×n have entries (Tn)i,j = cos ((π/4) |j − i|),502

and let In = {in,1, in,2, in,3} be its one-level HSS index set, indexed the usual way.503

Then the associated function f(z) = f1(z) = f2(z) = cos ((πz)/4) is holomorphic on504

B (n/2, n/2). Table 4.1 shows the minimum number of points p required for T̃ 1,p
n to505

approximate (Tn) |̂in,1×[1:n]\in,1
to a given tolerance. Note that even for such small506

matrix sizes and large tolerance, the number of proxy points required already scales507

linearly with n. It is also worth noting that the rank of Tn is at most 8 for all n and508

every off-diagonal block.509

Table 4.1
The size n of the matrix Tn and the minimum number of proxy points p required to attain∥∥∥(Tn) |̂in,1×[1:n]\in,1

− T̃ 1,p
n

∥∥∥
F

< 10−6.

n 16 24 32 40 48 56 64 72 80
p 21 27 34 39 47 53 59 65 72

The poor performance in Example 1 makes sense in light of Proposition 2.1: for each510

y ∈ Y = [1 : n] \ in,1 = [n/2 + 1 : n], k(z, y) = f (|z − y|) must not be too large in511
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absolute value for all z ∈ ∂F = ∂B
(
n/4 + 1/2, 4

√
8n/8

)
in order for a small number512

of proxy points to be sufficient. But in this case, we may observe that, if y = n/2+1,513

the maximum of f (|y − z|) = cos ((π/4)|y − z|) along z ∈ ∂F grows exponentially514

in n. In particular, even though cosine is bounded on the real line, its growth along515

the one-dimensional line z(t) = t + it (for real t) is exponential. Hence, the growth516

of p with respect to n shown in Table 4.1 gives evidence that f with large values on517

B (n/2, n/2) may require a lot of proxy points for an accurate approximation.518

On the other hand, if f is bounded on the real line and univalent on B (n/2, n/2),519

we show in Example 2 that we do seem to have good proxy point convergence for the520

HSS approximation outlined in Sections 4.1 and 4.2.521

Example 2. For n ≥ 8, let Tn ∈ Rn×n have entries (Tn)i,j = cos ((π |j − i|)/n).522

Then the associated function f(z) = f1(z) = f2(z) = cos ((πz)/n) is univalent on523

B (n/2, n/2) and bounded on the real line. Table 4.2 shows the minimum number524

of proxy points required for the sublinear HSS construction method to yield a given525

approximation tolerance for the topmost HSS row block.

Table 4.2
The size n of the matrix Tn and the minimum value of p such that the L-level HSS approxima-

tion constructed in Sections 4.1 and 4.2 with p proxy points approximates the topmost HSS block of
Tn to a relative Frobenius norm error 10−10.

n 2048 4096 4096 8192 8192 8192 16384 16384 16384 16384
L 1 1 2 1 2 3 1 2 3 4
p 26 27 27 28 28 28 28 28 28 28

526

Example 2 gives numerical evidence that the proxy-point approximation has good527

enough convergence properties to be used in practice, even despite global HSS error528

accumulation. We now show that good proxy point convergence is true for general529

univalent f in this context, as well as in the general case of Proposition 2.2.530

Lemma 4.1. Let I be an HSS index set for an n× n matrix, where n is a power531

of 2; let i ∈ I; and let l be the height of i. Define k(x, y) = f (|y − x|) for some532

f ∈ O (B (n/2, n/2)); let x ∈ î; let y ∈ [1 : n] \ i; and let p ∈ N. Then533

(4.1)

∣∣∣∣∣∣k(x, y)−
p∑

j=1

((
4
√
8
)
2l−1

p

)
ωjk (zj , y)

zj − x

∣∣∣∣∣∣ < 14
maxz∈∂F (|f (y − z)|)

2p/4 − 1
,534

where zj = c +
(

4
√
8
)
2l−1ωj, F is the open ball with center c and radius

(
4
√
8
)
2l−1,535

and c = (1/2) (max(i)−min(i) + 1).536

Proof. This is a straightforward application of Proposition 2.1, where we set537

X = î; Y = [1 : n] \ i; and D and E to be the open balls with center c and538

radii R = 2l−1 and r = 2l, respectively. We thus get α = 2 4
√
2/( 4

√
2− 1) < 14.539

Therefore, by the maximum modulus principle and Lemma 4.1, if we find that540

maxz∈∂B((n+1)/2,n/2−1) |f(z)| has a sufficiently small bound with respect to n, we541

would need only O (log n) + | log ϵ| proxy points to obtain an entrywise proxy point542

approximation with tolerance ϵ at every height of the HSS tree. But note that we543

obtained exactly such a bound in Section 2 in Proposition 2.3 if f is univalent on544

B (n/2, n/2), and if f and its derivative does not grow too quickly quickly with respect545
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to n along the real axis. Hence, we obtain the following absolute error bound for the546

proxy point approximation of an off-diagonal “far-field” row block:547

Corollary 4.2. Let T ∈ C be the n × n matrix with entries Ti,j = f (|j − i|),548

where f ∈ O (B (n/2, n/2)) is injective on B (n/2, n/2). Let I be the HSS index set of549

T , and let ij ∈ I. Then550 ∥∥∥T |̂ij×[1:n]\ij − T̃ j,p
∥∥∥
F
≤
(

7n2

2p/4+1 − 2

)(
(n3/8) |f ′ (n/2)|+ |f (n/2)|

)
.551

Proof. By Lemma 4.1, the maximum modulus principle, and Proposition 2.2, in552

that order, we have that for each 1 ≤ u ≤ |̂ij | and 1 ≤ v ≤ |[1 : n] \ ij |,553 ∣∣∣∣(T |̂ij×[1:n]\ij

)
u,v

−
(
T̃ j,p

)
u,v

∣∣∣∣ < 14
maxy∈[1:n]\i, z∈∂F (|f (y − z)|)

2p/4 − 1
554

≤ 14
maxz∈∂B((n+1)/2,n/2−1) (|f (z)|)

2p/4 − 1
555

≤ 14

2p/4 − 1

(
(n3/8) |f ′ (n/2)|+ |f (n/2)|

)
.556

Since |̂ij |, |[1, n] \ ij | ≤ n
2 , the result follows by summing over all u and v.557

Thus, to obtain a given proxy point approximation tolerance ϵ for any level, we need558

O (log n) +O (|f (n/2)|) +O (|f ′ (n/2)|) +O (| log ϵ|) proxy points. In practice, f and559

its derivative are often bounded on the real line, as in Examples 3 and 4 below.560

5. Discussion and numerical tests. First, we note that, although injectiv-561

ity of f as defined in the previous section is a sufficient condition, it is not strictly562

necessary in practice to enable the use of our sublinear Toeplitz HSS construction563

algorithm. The point of the injectivity criterion is simply to allow, using Proposi-564

tion 2.2, a sufficiently slow growth bound for f that depends only on its radius of565

analyticity. However, functions f that are not univalent on the relevant region can566

also grow sufficiently slowly in order for their related construction algorithm outlined567

in the previous section to work on the related Toeplitz matrix. Example 3 illustrates568

this.569

Example 3. For n ≥ 8, let Tn ∈ Rn×n have entries (Tn)i,j = (|j − i| − n/2)
2
,570

so the associated function f(z) = f1(z) = f2(z) = (z − n/2)
2
is not univalent on571

B (n/2, n/2). Table 5.1 lists the relative approximation tolerance for various HSS572

approximations of T from Sections 4.1 and 4.2. (For the scheme as outlined there,573

we set the maximum off-diagonal rank to r = 28. This is sufficient, since each matrix574

involved has a relative off-diagonal numerical rank of 3 with respect to the tolerance575

10−14.) Note that relatively small values of p result in a good approximation.576

On the other hand, the conditions of Proposition 4.2 provides a wide class of577

functions for which our sublinear HSS construction algorithm is guaranteed to work.578

Example 4. Since f1(z) = n/z and f2(z) = −n/z are univalent on B (n/2, n/2),579

the method from Sections 4.1 and 4.2 should work to find the HSS generators of Tn, the580

Cauchy kernel matrix evaluated at n equidistant points in [−1, 1], in sublinear time.581

Table 5.2 lists the relative approximation tolerance for various HSS approximations to582

the matrix Tn ∈ Rn×n with off-diagonal values (Tn)i,j = n/(j− i) and diagonal values583

equal to 0. The maximum relative off-diagonal numerical rank r is also listed; for this584

experiment, we set r = 28 for each matrix. It is worth noting that the accuracy bound585
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Table 5.1
The relative Frobenius norm errors of the L-level HSS approximation to Tn from Sections 4.1

and 4.2 using p proxy points. The top and bottom tables show the errors using 32 and 48 proxy
points at each level, respectively.

n 2048 2048 8192 8192 16384 16384
L 2 4 4 6 6 7
rel. err. (e10−13) 5.4863 2.9697 7.7119 3.3541 6.9370 3.4362

n 2048 2048 8192 8192 16384 16384
L 2 4 4 6 6 7
rel. err. (e10−13) 2.0441 9.3656 3.2532 1.0675 2.9239 1.0933

given in [28] may also be used in lieu of Proposition 2.1 for this particular kernel586

matrix to indicate applicability of the scheme from Section 4.587

Table 5.2
The relative Frobenius norm errors of the L-level HSS approximation to Tn from Sections 4.1

and 4.2 using p proxy points, as well as the numerical HSS rank r of Tn with tolerance 10−14. Again,
the top and bottom tables show the errors using 32 and 48 proxy points at each level, respectively.

n 2048 2048 8192 8192 16384 16384
r 26 26 30 30 33 33
L 2 4 4 6 6 7
rel. err. (e10−14) 7.1041 5.9208 8.1024 6.1210 9.4705 6.1585

n 2048 2048 8192 8192 16384 16384
r 26 26 30 30 33 33
L 2 4 4 6 6 7
rel. err. (e10−14) 1.7926 1.1841 2.1102 1.2407 2.5062 1.2521

Again, we note that even after global error accumulation associated with an HSS588

tree of depth 6 and 7 in Examples 4 and 3, the relative error is still quite low. This589

gives evidence that the asymptotic error decay regime from Proposition 2.2 holds well590

enough in practice: note that the maximum of the function in Example 3 is even591

increasing on B(n/2, n/2) as n grows. This increase, however, is polynomial in n, and592

therefore so is the numerator of the bound given by Corollary 4.2. The denominator593

of this bound is exponential in p, which helps explain the quality of the approximation594

in Example 3.595

6. Extensions. In forthcoming studies, we can use the arguments of Section 4.3596

to bound the numerical rank of certain classes of matrices. In particular, we could use597

control over the error in Proposition 2.1 to produce bounds similar to Corollary 4.2598

and argue when a general one-dimensional kernel matrix may have low numerical rank.599

Furthermore, we may perform a more detailed analysis of the global error accumulated600

after all compression steps in Sections 4.1 and 4.2 are performed, including the SRRQR601

factorization steps. This gives additional motivation for proving an absolute bound in602

Proposition 2.1, Proposition 2.3, and Corollary 4.2, since relative bounds are harder603

to integrate into a global HSS error analysis.604

Finally, we may also extend the bound of Proposition 2.1 to analytic functions605

of more than one (complex) variable. In particular, no part of the argument used606

in this proposition relies on complex analysis concepts that apply only in the one-607

variable case. Hence, we may explore generalizations of the complex-analytic low-rank608

This manuscript is for review purposes only.



20 PROXY POINT METHOD ANALYSIS AND APPLICATIONS

approximations discussed here to more general Toeplitz matrices, as well as to non-609

Toeplitz matrices that are defined by analytic functions in other ways. When doing610

so, we may also combine the results of Section 4.3 with the hierarchical partitioning611

described in [24]. As mentioned above, this may again enable us to obtain off-diagonal612

rank bounds for classes of kernel matrices by certain multivariable analytic functions613

satisfying adequate growth bounds.614
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