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ACCURACY ANALYSIS OF THE PROXY POINT METHOD WITH
APPLICATIONS TO SOME TOEPLITZ MATRICES*

MIKHAIL LEPILOV!T AND JIANLIN XIA*

Abstract. For some kernel matrices, low-rank approximations can be quickly obtained via
analytic techniques. One important class of analytic methods is based on the use of proxy points.
Accuracy analysis for various proxy point methods has often been heuristic in nature, other than
for certain special kernels. For more general cases, the methods lack an explicit number or location
of proxy points required to yield a particular approximation accuracy. In this work, we carry out
new analysis of a proxy point method that is applicable to general complex-analytic kernels. An
intuitive way of choosing proxy points is used to show explicit error bounds. Such bounds decay
exponentially with regard to the number of proxy points. This also leads to convenient estimates of
numerical ranks of relevant kernel matrices. To showcase the utility of this new analysis, we apply
it to design a new sublinear-time hierarchically semiseparable approximation method for certain
Toeplitz matrices, including ones that frequently arise from real-world applications. This allows, for
example, inversion of such matrices with lower computational complexity compared with existing
direct methods. Some extensions of these ideas are also discussed.

Key words. kernel matrix, proxy point method, approximation error, rank-structured matrix,
Toeplitz matrix, sublinear complexity
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1. Introduction. Low-rank matrix approximation is a common task in many
areas of mathematics, computation, and engineering. By a low-rank approximation
of an m x n matrix A, we mean a decomposition A ~ UVT, such that the column
size of U is much smaller than m and n, and such that the approximation satisfies a
certain accuracy requirement. Such an approximation allows even very large matrices
to be represented, up to a certain accuracy, by matrices on which operations may
be carried out significantly faster. Broadly speaking, we may divide (deterministic)
low-rank approximation techniques into two classes: algebraic methods and analytic
methods. Examples of algebraic methods include truncated SVDs and rank-revealing
QR factorizations. Such methods are applicable to any matrix but are typically
too slow to apply to large matrices. Examples of analytic methods include Taylor
series expansions, interpolations, and proxy point methods. Such methods can be
typically applied with little or essentially no computational cost, but require the
matrix under consideration to be a kernel matrix defined by a kernel with desirable
analytic properties.

In this work, we focus on one proxy point method which uses a set of proxy points
to quickly construct basis matrices in low-rank approximations of kernel matrices. The
root of this idea may be traced back to the fast multipole method (FMM) [6] and
its variants [16, 29]. The error introduced by an analytic low-rank approximation is
governed by analytic properties of the kernel in question. For proxy point methods,
most accuracy analysis has relied on heuristics, arguing exponential convergence in
the number of proxy points. Such analysis may be found in [15, 29, 13]. This is
contrasted with the type of analysis carried out for the proxy point method in [28],
which relates the number and location of proxy points to accurate error bounds of
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2 PROXY POINT METHOD ANALYSIS AND APPLICATIONS

the low-rank approximation of the kernel matrix. However, the analysis in this last
reference is only applicable to kernels of the form k(z,y) = 1/(z — y)? for z,y € C
and some d € N.

Here, we generalize this latter type of analysis to any one-dimensional complex-
analytic kernel, bounding the errors of the proxy point method. Since for well-
separated sets, many commonly-used kernels are complex-analytic in each variable
on a region containing the set (holding the other variable constant), this analysis ap-
plies widely to one-dimensional kernels. We also show that, if such a kernel satisfies
a certain univalence criterion, we may select proxy points like in [28] so as to get
a rigorous accuracy bound that decays exponentially with respect to the number of
proxy points. This also yields a convenient numerical rank estimate for the associated
kernel matrix.

In addition to its theoretical utility, such analysis is useful, for example, when
performing interpolative decompositions [14] of matrices using function approximation
by a proxy point method. In [27], for example, even though the error introduced in
the function approximation step is used to provide a bound for the error incurred
in the interpolative decomposition step, the function approximation error is not itself
studied. In this way, we hope that this work helps to fill gaps in the existing literature
on proxy point methods.

As another illustration of the utility of this analysis, and following our work in [12],
we introduce a new sublinear-time hierarchically semiseparable (HSS) approximation
algorithm for certain Toeplitz matrices arising from univalent maps applied to regular
grids. Such matrices appear, say, as covariance matrices of Gaussian processes like in
[30]. A general overview of fast direct computations with Gaussian process covariance
matrices is given in [1]. In this context, the kernel matrix is obtained from applying a
given positive-definite kernel to a regular 1-dimensional grid. Existing rank-structured
(HSS or similar) approximation construction schemes for such matrices carry at least
O(n) costs [1, 2, 26], so our scheme represents a substantial speedup over existing
methods.

Additionally, we propose an extension of the ideas to kernels of dimension greater
than one. We also verify that our proxy point approximation error bounds are illus-
trative of real-world performance by carrying out several numerical tests. Tests on the
accuracy bounds for the proxy point low-rank approximation applied to different sets
of points and kernels are given. We also carry out tests of the above HSS compression
scheme applied to specific matrices.

The rest of this paper is structured as follows. In Section 2, we go over the proxy
point method and perform the new proxy point error analysis for general complex-
analytic functions. We also show how to use this analysis to guarantee the efficacy of
proxy point approximations to some Toeplitz matrices. In Section 3, we review HSS
matrix approximation. The HSS construction algorithm for the Toeplitz matrices
under our consideration is detailed in Section 4. In Section 5, we perform some
numerical tests. Finally, we suggest some extensions of this work in Section 6.

Throughout the paper, we use the following notation.

e Let ¢ € C and r > 0. Then B(c,r) denotes the open ball in C with center ¢
and radius r, O(B(c,r)) denotes the set of holomorphic functions on B(e,r),
and D denotes B(0,1).

e Let ¢ < j. Then {i: j} denotes the set {¢,i +1,...,5}.

e Let k: FFx G — C be a function and X C F,Y C G be totally-ordered finite
subsets of size r and s, respectively. Then k(X,Y) = (k (2, y;))rxs means
the r x s matrix with (4, j) entry k (z;,y;), where z; is the ith element of X
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MIKHAIL LEPILOV AND JIANLIN XIA 3

and y; is the jth element of Y.

e Let C be an m x n matrix and M C {1 :m}, N C {1:n}. Then by Ayxn
we mean the |M| x |N| submatrix of A picked by the row index set M and
column index set N.

2. Accuracy analysis for the proxy point method. For a kernel matrix
k(X,Y) defined by the evaluation of a kernel function k(x,y) at two finite sets
X,Y C C, the proxy point method is a simple yet powerful way for finding a low-rank
approximation. The idea is to pick an appropriate set of proxy points Z C C based
on ideas from, for example, potential theory, function interpolation, or an integral
representation [11, 16, 27, 28, 29]. A low-rank approximation then carries the form

(2.1) EX,Y)~UVT with V=kY,2).

(Alternatively, the form may be UV with U = k(X, Z), depending on the context.)
In particular, it is shown in [28] that one way of approximating k(x,y) = 1/(x — y)4,
for d € N, with an integral representation is to use the Cauchy integral formula. This
would then allow us to take Z to be a set of quadrature points. In this work, we
expand this idea to more general kernels.

2.1. Accuracy of kernel function approximation. We follow the strategy
of [28] but derive the approximation error results for general complex-analytic kernels
k(z,y). Let D = B(c,r) and E = B(c,R) be open balls in C, with » < R. Let
X ={z;}JL; € D and Y = {y;}7_, be finite sets, and let k : C x Y — C be a
function such that, for each y € Y, k(z,y) is an analytic function of z on E. Then,
for each x € X,y € Y, by the Cauchy integral formula, we have

(2.2) K(ey) = —— / RY g,

21 Jo C—x

where C'is the boundary of an open ball with center ¢ and radius v/Rr. See Figure 2.1.
Here, we chose the radius v/ Rr heuristically from the study in [28] (that was conducted
for a special kernel only). We will see shortly that precisely this choice of radius
allows the analysis of this section to give a good accuracy bound for our proxy point
approximation to k(z,y).

Fic. 2.1. The contour C (dashed), the finite set X, and the boundaries of the open balls
D and E. (The set Y is not pictured.) The shaded green region shows the disk F defined in
Proposition 2.1, which is a compact region where the mazimum of k(z,y) (over ally € Y ) determines
the approximation bound.
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4 PROXY POINT METHOD ANALYSIS AND APPLICATIONS

Using the trapezoidal rule with p points to approximate (2.2), we then have

VRr & 1 ,
(2.3) k(z,y) = <z — x> (wk(zj,y)) + e,
P = \z
where
(2.4) zj = c+ VRrw, w:eQZi,

and the termwise error € € C ideally has very small magnitude. The points z; will
serve as our proxy points. That is, Z = {z;},_; in (2.1). (2.3) provides a separable or
degenerate expansion for k(z,y). Hence, in this setup, for the low-rank approximation
(2.3), we take

v/ J - .
U=-— RT( “ ) :1(C Zﬂ) .V =k(Y,2).
mxp mXxXp

p T — 25 p T — 25

(Notice m = | X| and p = |Z|.) This yields a proxy point low-rank approximation to
E(X,Y).

Note that in the setup for (2.2) above and in Figure 2.1, the geometric role of the
set Y is not explicitly mentioned or shown, even though the exact locations of the
points in Y are a key part of the analysis to follow. Indeed, in the existing literature,
Y is typically assumed to be well separated from X and the distance between X and
Y is used for certain bounds or heuristics [12, 28]. Here, the geometric information
of the set Y factors into the above by determining the domain of analyticity (in z)
of k(z,y), which in turn determines R and r, given c. It also determines the disk
F, shown in Figure 2.1 and used in to quantify the growth of £ in the bound of
Proposition 2.1.

For example, consider k(z,y) = 1/(z — y) and ¢ = 0. If the closest point to ¢ in
Y is y; = i(= v/—1), then we may pick E = B(0, 1) and therefore obtain R = 1. On
the other hand, if the closest point in Y to ¢ is y; = 2, we may pick E = B(0,2) and
therefore R = 2. (r is chosen to be the smallest radius such that B(0,r) contains all
the points in X. We will show in Proposition 2.1 that, if we maximize the ratio R/r,
the analysis to follow provides the tightest proxy point approximation bound given a
tame growth of k(z,y) in z on F', which matches the heuristic explored in [28].

Our first goal is to find a bound for |¢| in (2.3). To do so, we give the following
result. Its proof is based on classical techniques, including those for the proof of [18,
Theorem 2.2], with some modifications for our context.

PROPOSITION 2.1. Let D = B(c,r) and E = B(c,R) be open balls in C, with
r < R, and let X C D and Y be finite sets. Given p, let each z; for 1 < j < p be
defined as in (2.4), and let k : C xY — C be a function such that, for eachy € Y,
k(z,y) is an analytic function of z on E. Then for each x € X,y € Y, we have

Jj=1

where a = 2(1(%1;/;71)/1:; and F = B(c,r (R/r)3/4)-

This manuscript is for review purposes only.
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MIKHAIL LEPILOV AND JIANLIN XIA 5

Proof. Fix x € X and y € Y. First, by the parametrization v(t) = ¢ + et/ Rr of
the contour C' in (2.2), we may write

;/ K-+ VRret ) (iVRre)
2mi ¢+ VRrett — g

Define k; , : B(0,y/R/7)\ B(0,/r/R) — C by
k(c+ 2v/Rr,y)(z Rr)

k(l‘,y) =

2.5 k‘w zZ) =
(2:5) a(?) c+2VRr —z
Then
L[ kg (ef)iet 1 ko (0)
9 _ zy\€ _ z,y =
( 6) k(x7y) 2 A oti dt o LO C dC ap,

where 79 = e and ag denotes the O0th Laurent coefficient of kg y-
Consider the Laurent expansion of k; ,(2) at 0:

(2.7) key(z) = Y @,

l=—00

which, by our assumption on £, is valid everywhere that k , is defined. We show that
the sum of some Laurent coefficients |a;| can be used to bound the error incurred in
applying the trapezoidal quadrature rule to (2.6) as in (2.3). In fact, (2.3), (2.4), and
(2.5) mean

e=k(z,y)— - xywj

I M:

"G

For some steps below, we need a compact subregion on which the expansion (2.7)
holds, because we will require absolute convergence, and because we will need to be
able to bound certain quantities using values taken on its boundary. In particular,
we define the compact annulus A = B (0, (R/r)Y/4) \ B (0, (r/R)*/*). The radii here
are chosen to scale with R/r. (Note that taking the radii to be (R/r)® and (r/R)*
for any s € (1,1/2) would work just as well, and it would just slightly alter the error
bound). Now, since each w’ € A and A is compact, we have

P
DICHEE S ILTET I IEES oEr
j=1

_7 1l=—c0 l*—oo l=—o00

where the last line follows from the fact that >2%_, wt is p if [ is a multiple of p and
is 0 otherwise. Hence, by (2.6), we get

p

(28)  |el= Z

oo

ap — E Apl

l=—00

J_
,yw =

< Z |ap| +Z|apl|

1
p l=—00

Next, we bound the magnitude of the Laurent coefficient a,; of k., using R, r, p,
and the maximum of k over F' = B(c,r (R/r)3/4). (Recall that F' is the green shaded
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6 PROXY POINT METHOD ANALYSIS AND APPLICATIONS

region in Figure 2.1.) To do so, note that k. ,(2) = Z=ck(V Rrz + ¢,y). Therefore,
defining " = F\ B (c,7(R/r)'/*), we have

(11 e = /G = o)1) (e )

ma ks (2)] = ( ma

__r(@®/m o
= (R =) s k@ )l = 5 max(k(z y)l.

Hence, for each | € Z with [ # 0, we have

1 kay(C) 1 ks ,y(C)
la;| < max ( %/ i dci, %/ ClH d¢
[Cl=(R/m)1/4 [Cl=(r/R)1/4

L maxeea by ()] _ o max.cp k()

(@)™ =2 ()"

o Qmaxeep |k(z,v)] < OMaX;eoF k(2,9
=35 ((R/r)1/4)\l| -2 ((R/?")l/‘l)lll

where the last two inequalities follow from the maximum modulus principle and the
fact that k(z,y) is holomorphic in z on E. Combining this with (2.8), we get

)

a [~ maxzeor [k(2,y)] max:eor k(2 y)|
el =2 =« .
| | 2 ( 1221 ((R/T)l/4)pl (R/T)P/Zl_]_ 0

For a thorough discussion of similar bounds, see [18]. However, note that the
bounds given there and elsewhere in the numerical analysis literature do not simulta-
neously and explicitly bound the proxy point error for all values of an enclosed set X
for each y € Y. Hence, we may use our new result to bound the entrywise error for a
kernel matrix. This feature will allow us to use this bound to guarantee applicability
of the HSS construction method in Sections 4.1 and 4.2. This proof also provides
justification for the heuristic, noted above and shown in [28] for the Cauchy kernel,
that in the setup of this section we should pick C' to have radius vRr.

2.2. Accuracy for kernel matrix low-rank approximations. The termwise
error bound for each element k(x,y) allows us to obtain an absolute 2-norm error
bound for the approximation to the matrix k(X,Y). Furthermore, if k satisfies a
univalence condition, we may obtain a relative 2-norm error bound for the matrix
k(X,Y) that guarantees exponential convergence in the number of proxy points.

ProOPOSITION 2.2. Let D, E, X,Y,r, R, k,F,a, and each zj for 1 < j <p be as in
Proposition 2.1, and define

1 1 1
zZ1—T1 Z2—X1 U Zp—XT1
1 1 . 1
U=+VERr| ™ =% ) T diag(w, w?, ... wP),
1 i
z21—T] 22—I) Zp—Xy
k(yi,21) k(y2,21) - k(Ym,21)

k(y1,22) k(y2,22) - k(Ym,22)

ki, 2p) k(y2,2p) o k(Ym,2p)

This manuscript is for review purposes only.
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MIKHAIL LEPILOV AND JIANLIN XIA 7

where x1,...,x; are the elements of X and y1,...,yn are the elements of Y. Then

maxyey,zeaF(k(% y))
(R/r)p/* =1

Furthermore, if in addition, | > 2, ¢ is one of the points in X, and if k(z,y) is
bounded and univalent as a function of z on E for each y € Y, then

(2.9) |k(X,Y) = UV, < Ima

KX.Y) - OV, i1+ 08)
IE(X, V),  ~ (R/r)p/t =17

2
where B = (R/r)3/* (71:‘7‘(/’“}/5?/4) )

Proof. The first result is obvious, since by Proposition 2.1,

maXer,zeaF(k(Z7 y))
(Rjrp7T =1

To see the second result, we first bound the function maximum on the right-hand
side of (2.10). The condition that k(z,y) is univalent in z on E allows us to bound its
growth away from c¢ by the distance from c¢. In particular, we use the growth theorem
for univalent maps on the unit disk that take the value 0 and have derivative equal to
1 at the origin; such maps are called regular univalent maps. We define a regular map
gy(z) on the unit disk that takes values related to k(z,y), use the growth theorem to
bound its growth away from 0, and then use this to bound the growth of k(z,y) away
from c. More precisely, for each y € Y, define the functions f, hy, g, : D — C by

fy(Z) = k(zvy)7
hy(z) = Rz + ¢, and
(fy o hy) () = (fy 0 hy) (0)

(210)  ||k(X,Y)—UVT||, < [[K(X,Y) - UVT||, < lma

gy(2) = ;
! (fy o hy)' (0)
respectively. Then each g, is regular and univalent, so by the growth theorem, we
E] E]
have W =~ |gy( )‘ < W Thus, for z S ]D),
2] |(fy © hy)' (0)] 2] |(fy © hy)' (0)]
(2.11) < |(fy o hy) (2) = (fy o hy) (0)] < :
(1+]2])* (1—1z))?*

Therefore, from the second inequality of Equation (2.11), for z € 9B (0, (7“/1%)1/4)7 we
have

Gy ohy) ()] < 2 ’({“"l; O+ 15, o) 0)
< s Uy o) O] 1y o) O
—%m L(0)] + 1)
_%u O W, ()] + 1£,(0)

R3/4,1/4
= W ’f ‘ + £y (A,

This manuscript is for review purposes only.
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8 PROXY POINT METHOD ANALYSIS AND APPLICATIONS

3/4. 1/4
so |k(z,y)] < Wvﬂz(c,yﬂ + |k(c,y)| for all z € OF and y € Y. (Here,
k.(c,y) denotes the derivative of k(z,y) as a function of z evaluated at c¢.) Defining

v = (R/r)ﬁ, we thus have by Equation (2.10) that

CY) =0V, (e (s ke )| + K(e,y)])
WX, X V),
R3/4,1/4
o [ (G ey e e w)| + k(e )] )
KXY,
12 o [P (2 ey e e, 9)| + [k(e,)1)

maxXycy (Zé‘:l |k($gay)|>

Now, from the first inequality of Equation (2.11) and the fact that [ > 2 and ¢ = z;,
for some 1 < jg <1, there exists a 1 < j; <[ such that x;, is a distance r away from
xj,. Hence, by the triangle inequality applied to (fy o hy)(zj,), (fy © hy)(z;, ), and 0,
we know since {FEk:()| < |k(zj,,y) — k(zj,,y)| that

1+(r/R)?
rlkz(c,y)|
(14 (r/R)?)

In particular, we then have the following bound on the denominator of (2.12):

(2.13) (1/2) < max(|k(z;,, y)], [k(z,,9)])-

r k- (e.y)] :
(2.14) max (max (|k(c, Y|, (1/2)(14‘(7"/11%)2))) < max ; |k(zj,y)

yey yeY

Let yo = argmaxycy (% |k (c,y)| + |k(c, y)|) Combining (2.12), (2.13),

and (2.14), we thus have

3/4,1/4
||k(X7Y) - UVTH2 < (1_R(7-/R)1/4)2 k= (e, y0)| + [k(c, yo)l
<lIm
k(X Y)], max (|k(c,y0)| (1/2)%0/1%)&)
R3/4,1/4
< Iy | L=C/BTD2 [k=(e y0)l [k (e, go)|
- (1/2) {a=osil k2 (¢, 90)]
= Imy(1l + ap).
The result then follows by our definition of ~. a0

Hence, for a given 2-norm tolerance 7 of the proxy point approximation to
k(X,Y), we only need to use O (loglm + log 7) proxy points, as long as the assump-
tion on the analyticity of k holds, and as long as k grows sub-exponentially on the
relevant domains. For a lot of functions k, this growth condition is not satisfied, and
it is unclear a priori when the growth of k£ may be tame enough for Equation (2.9) to
allow the feasibility of the proxy point method. But if k satisfies a certain univalence
condition, then Proposition 2.2 guarantees slow growth and hence a relative error
bound for the approximation to k(X,Y") that decreases exponentially in the number
of proxy points p.

This manuscript is for review purposes only.
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MIKHAIL LEPILOV AND JIANLIN XIA 9

2.3. Application: approximating some Toeplitz matrices. As a specific
application of this, which we develop further in Section 4, we show that some off-
diagonal blocks of Toeplitz matrices with certain kinds of Toeplitz vectors can be
approximated efficiently by the proxy point method. To do so, we assume without
loss of generality that n is divisible by 8. (This is purely for convenience of notation
and is not a restriction on the applicability of the main ideas.) Let

to  to1 e t_(no
ti to e t_(n_o)

(2.15) T=1 . o . :
tho1 tn_z ... to

be an n x n real- or complex-valued Toeplitz matrix whose entries are t; = f1(4)
for —n < i < —1 and t; = fa(i) for 1 < i < n, where f; € O (B(—n/2,n/2)) and
f2 € O(B(n/2,n/2)) are univalent. Such matrices occur in [3, 20], as well as in the
Gaussian process literature mentioned in the introduction [1]. In [3], for example,
f1, fo are defined by —f1(2) = fa(2) = (1 —2)log ((z — 1)/2)+ (2 + 1) log (z/(z + 1)).
Other commonly-used kernels that are univalent on the relevant domain include the
Cauchy kernel and the Gaussian kernel with “large” (in this context, O(n)) length
scale.

We may consider, for example, a certain off-diagonal block of T" to be a kernel
matrix corresponding to the kernel k(x,y) = fa(z — y):

Tin/24n/441,n—n/4x[1,n/2) = B(X,Y),

where X = [n/2+n/4+ 1,n—n/4] and Y = [1,n/2]. By our assumption on fs, we
are able to use the proxy point method with center 3n/4 and radius n/(4v/2) to get
an approximation for k(X,Y’). Note that here, R = n/2 and r = n/4, so R/r = 2.
Ensuring this separation between X and Y, and hence the analyticity of fo, is the
reason why we did not pick X = [n/2 + 1,n] and attempt to approximate the entire
bottom-left subblock of T'. Using Equation (2.9), together with the function bound
in Proposition 2.3 below, guarantees that we would need O(logn) proxy points to get
a given approximation accuracy for large n.

PROPOSITION 2.3. Let f be holomorphic, bounded, and univalent on B (n/2,n/2).
Then for z € OB ((n+1)/2,n/2 — 1),

1F(2)] < (0/2)° [f (n/2)] + |f (n/2)].

Proof. This is an adaptation of the proof of Proposition 2.2; we modify it here
to explicitly relate n to the case of the Toeplitz matrix above. Define the functions
h:D—Candg:D—C

h(z) =(n/2)z+n/2, and

UG = (Fon )
9(z) Fon ()
|z

Then g is schlicht, so by the growth theorem, we have |g(z)| < T Thus, for
z€0B((3) % (3) (3 -1)).

[(foh)(2) = (feoh)(0)] <

] o m) )]
(= |21

This manuscript is for review purposes only.
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10 PROXY POINT METHOD ANALYSIS AND APPLICATIONS

Therefore, we have

_ Al on) (0)]

o Tlreno

/

fr(n/2) W O)[ +1f (n/2)]
f (/2P )] + |f (n/2)]
n/2) 1" (n/2)| + |f (n/2)],

so the result follows from the definition of h. O

<

S
~
DN
[ V)
—

Plugging the above bound into Equation (2.9) and using the fact that, in this
case, R/r = 2, we get the following bound for the 2-norm error incurred using a proxy
point approximation k(X,Y) = UV with p points:

IK(X,Y) = UV, < (n/3) (21fi/i D) (=) (@2 17020+ 11w2).

Therefore, a given error tolerance requires O(logn) proxy points. In the following two
sections, we further develop this idea to construct an HSS approximation to 7" with
a computational cost that is sublinear in n.

3. Review of HSS matrix approximation. Next, we review the data struc-
ture known as a hierarchically semiseparable (HSS) matrix form. Here we only give
a brief outline; more details can be found in [25].

DEFINITION 3.1. Let M be a matriz. Assume without loss of generality that M
is square with row/column size n equal to a power of two, and let L < logy(n).
Recursively partition in two the set of row/column indices of M for a total of 2% — 1
subsets. Specifically, for each 0 <1 < L, partition [1 : n] into the 2! sets

n{[ 2] B ] e - nh )

Let T = UJL:O Ty, and impose a partial order on I by set inclusion. We call T the
L-level HSS index set of M. Then its Hasse diagram T is a perfect binary tree,
called the HSS tree of M. Now, for each 1 < j < 2% — 1, define ij € T to be the
element corresponding to the jth vertex of T in its postordered traversal. For each
1 <j <2l —1, define M; = M« and Mj| = M1.n\\i;xi;; these are called
the jth HSS block row and jth HSS block column, respectively. (See Figure 3.1
for an example when L = 2.) The HSS rank of M is the mazimum rank, over all
1<j<2b—1, of My and M.
An L-level HSS form for M is a 6-tuple {D, U, R, V, W B}, where:
o U= {Uj}i<j<ar—2, V={Vj}i<j<or_o, and B = {Bj}1<;<ar_o are sets of
matrices;
e D ={D,};cr is a set of matrices, where I is the set of postordered indices of
leaves of T ;
e and R = {R;}jey and W = {W,};c5 are sets of matrices, where J is the set
of postordered indices of vertices of T of depth at least two;
such that
1. Dj = Mijxij forjel;
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Ay A

Al

(a) HSS block rows (b) HSS block columns

Fic. 3.1. The HSS block rows and columns of M where L = 2. The labeled green blocks with
rounded corners correspond to the HSS tree depth | = 1; the labeled yellow blocks with sharp corners
correspond to the HSS tree depth | = 2.

2. Mi i, = UijVsﬁ)(j) for 1 <j <2l —2 where B; is full-rank and sib(j)
is the postordered index of the sibling of j;
3. and U; = Uea(3) Her () and Vj = VCI(j)WCl(j)) for1 < j <2l —2 where
e2(j) flea () Vea () Wea ()

c1(j) and c2(j) denote the postordered indices of the left and right children of
the postordered jth vertex of T, respectively.

Collectively, all of the matrices mentioned in this definition are called HSS generators
of M. Note that we can find generators whose sizes can all be bounded by the HSS
rank of M [25]; this is the main point constructing the HSS form of M and the reason
for the efficiency of HSS algorithms. Figure 3.2 illustrates the various relationships of
the HSS generators of M.

D, U B Vy' Dy Uy B\Vy | 0B BaWI V|0 R BaWEVY
Us B3ViT
Uy BV D, Uy BoV/! D, Us Ry ByWI V]| Uy Ry BsW VA
Dy U,B V' UsRBWIVI| U R BWIVI] Dy U,B Vi
UsBsVy
UsBs VI D; UsBs BoWEVE| Us Ry BWEVE| Us BsV[T D;

Fic. 3.2. The HSS generator products of M placed into the blocks of M that they generate.

Finally, we say M has numerical HSS rank k with respect to a tolerance 7 if the
numerical rank of M; and MJ‘ with respect to a tolerance 7 is at most k over all
1 <j <28 —1. We define an L-level rank-k HSS approximation of M to be an
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12 PROXY POINT METHOD ANALYSIS AND APPLICATIONS

L-level HSS form of M where we replace condition 2 in Definition 3.1 above with the
following:
2/ Mi; i) & UijVSﬂ(j) for 1 < j <2 —2 where B; is a k x k matrix.

In the case that M is a Toeplitz matrix, for 1 < j < 2 — 2, existing methods of
constructing any one of U;, V;, R;, Wj, or B; in general scale linearly in n, for at
least some j.[22] In the next section, we outline an algorithm to construct any such
generator with sublinear cost. This is useful depending on how the HSS form of M
is subsequently used. For example, our method confers a speedup if only part of the
output of a matrix-vector multiplication with M is needed.

4. Sublinear Toeplitz kernel HSS generator construction. In this section,
we detail our sublinear HSS construction algorithm for Toeplitz matrices arising from
univalent maps applied to a regular grid in one dimension. The combination of ideas
necessary for this method was first explored in [12]. The approximation construction
algorithm is detailed in 4.1 and 4.2. The analysis, started in Section 2, of the number
of proxy points necessary for a good approximation is continued in 4.3.

To understand the utility of the new scheme, it is worth briefly reviewing existing
Toeplitz methods. Over the past six decades, many algorithms have been devised that
exploit the additional structure of Toeplitz matrices to perform various matrix oper-
ations faster than the counterpart “naive” algorithms applicable to general matrices.
For example, so-called “fast” (faster than cubic time in the size of the matrix) and
“superfast” (faster than quadratic time in the size of the matrix) algorithms have been
devised to solve Toeplitz systems [9, 5, 7]. The central idea of such algorithms over the
past few decades has become to apply fast Fourier transforms (FFTs) and solve the
equivalent system in the frequency space. The resulting Cauchy-like matrix turns out
to both be quickly solved by Gaussian elimination and to have low off-diagonal rank;
hence, it can be quickly approximated by structured matrices [5, 17, 2]. Similarly, in
digital signal processing, it has become well-known that the multiplication of Toeplitz
convolution matrices with a given signal can be accelerated by applying FFTs and
performing the equivalent operation in the frequency domain [10, 4].

After certain speedups that may be obtained using randomized techniques, the
dominant cost in such structured matrix frequency-domain Toeplitz solution and mul-
tiplication algorithms becomes the application of FFTs [25, 14, 26]. Hence, in theory,
general HSS algorithms can potentially achieve a speedup for matrix operations when-
ever a matrix is both Toeplitz and has low off-diagonal rank before the application
of FFTs [25]. In such algorithms, the dominant cost becomes the construction of the
structured approximant; thus, bringing this cost down is a worthwhile endeavor. In
this work, we show that for Toeplitz matrices whose Toeplitz vector is generated by a
univalent map applied to the positive integers, we are able to reduce the HSS construc-
tion time cost from O (r?n) [22, 23] to O (log5 (n)) in the size n of a square matrix
with off-diagonal rank bound r. While the new algorithm is less widely applicable,
it may nevertheless be applied to certain important classes of matrices, such as those
arising as covariance matrices of Gaussian processes [1, 30], or from a convolution of
a digital signal with a large Gaussian filter [4]. In addition, since this new scheme
does not rely on Fourier space representation, it has the advantage of preserving the
rank structure of any diagonal or rank-structured summand that may be added to
the Toeplitz matrix, such as when localizing eigenvalues [21, 19].

The first key idea in our new construction scheme is the use of the proxy point
method in the process of obtaining an interpolative decomposition (also known as
skeletonization) of the HSS blocks, as was done previously in [15]. The second key
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idea is the reuse of the resulting approximate basis matrix factors for all the HSS
blocks at a given HSS depth, as was done previously in [12]. Here is where we use
our new analysis from Section 2 to guide the process of obtaining these approximate
basis factors, as well as to understand when the construction scheme is applicable.
In the case that the proxy point method is used to approximate off-diagonal blocks
of Toeplitz matrices with Toeplitz vector generated by a complex-analytic univalent
map, this error is then shown to increase slowly enough in n to allow our construction
algorithm to be performed in sublinear time relative to n. While we do not perform
an operation count to justify this here, since our algorithm is almost identical to the
one outlined in [12], the analysis from Section 5 of that paper applies to the algorithm
outlined in this section.
Let T be a Toeplitz matrix defined by the Toeplitz vector

(t—(n—l)vt—(n—Q)u ceeyto1, oyt 7tn727tn71)7

as in Equation (2.15), and similarly define f; and fy as in Section 2. To more easily
illustrate the application of this method, we will deal with the symmetric case t_; = t;
(so fi(—=i) = fa(i)) for i = 0,...,n — 1; define f(z) = f1(—z). The non-symmetric
case is handled similarly (see Section 4.2). Since we are constructing generators for
approximations to the off-diagonal blocks of T, we may again assume without loss of
generality that tg = 0. Furthermore, since this algorithm is meant to apply to large
matrices, we may assume that n is a power of two greater than 8.

4.1. Constructing the HSS row generators. Let L < logy(n) — 2 be the
number levels in the desired HSS approximation to T. Let r be a bound for the
numerical HSS rank of T'; we assume specifically that r is O(logn). The analysis in
Section 4.3 can actually be used to give a bound for r. In particular, we can show
that 7 is O(log? n); see Section 6.

For each 1 < ¢,j < n with ¢ # j, we have T; ; = f(|j —i|). Hence, we may
consider an HSS block 7} to be the kernel matrix k(ij, [1 : n] \ i;), where & is defined
by k(z,y) = f(|z —y|). Directly finding a low-rank factorization for 7", for example
as when j = 1 in the first step in the HSS construction algorithm in [25], is already
prohibitively expensive with at least O(n) flops. Instead, we may follow a similar list
of steps as in [12, Section 3.2]:

e If j is not leaf of 7, we assume we have performed this list of steps on its chil-

dren ¢;(j) and co(j) to obtain sets of indices i'cl(j)7 iQQ(j) Ci;. If j is a leaf, we

define ¢; (j) = ca(j) = j and i} = i;. Then, we define i = i, ;Ui and ap-

J

ply a proxy point approximation to (T_ However, since we only

J )i;x[l:n—\ijﬂ.
assumed that f is analytic on B (n/2,7n/2), by Equation (2.9), the ratio R/r
in this case could be as large 1/n, and therefore the number of proxy points
p required to obtain a reasonably good approximation may be prohibitively
large. Hence, we first separate i; into the “near-field” and “far-field” subsets
i; and i; = i; \ 1;, respectively, where i; is the subset of i, consisting of its
first and last |i;|/4 values, respectively, ordered the usual way. We then define
L=Lnl =0T T, =k (i;., [1:n] \ij), and T, = k (i;., 1:n) \ij);
and we apply a proxy point approximation to only the far-field subblock:

T, =~ U;Vj. For this approximation, we use a circular contour with center

(1/2) (min(i;) + max(i;)) and radius (v/2/2) (max(i;) — min(i;) + 1) to ob-
tain R/r = 2. (See Figure 4.1 and Figure 4.2.)
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Im
+8i
+4i
x X x
X X
X X
100996 eCEEENEEEEEEEEEEEENEEEEEEEEE>
0 « 4 <8 12 16 20 24 28 32
x x Re
X x X
+—4i
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+8i
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+—4i
+—8i

FiG. 4.1. Top: mear-field points ;’1 (o), far-field points ;’1 (s), prozy points (x), and the points

[9: 32] (m) involved in the approximation of the leaf HSS block Ty |y Wln—liy] = F (1:8],[9:32])
I x[1:

for a matrixz of size n = 32, number of HSS levels L = 2, and number of proxy points p = 16.

Bottom: the resulting index set i (O0). (These are “cartoon illustrations” and are not actual results
from such an approzimation applied to a subblock of an actual matriz T.)

We thus have

_ _ 1\ _ I 0 T,
(TJ ) |§;.><[1:nf\i]-\] =11; (ij2> =1L (0 [jl_) ( "l/z ) )

where II; is a permutation matrix.
e Next, we find a strong rank-revealing QR factorization

0] = UJ (H;TUJ) |[1;7-]><[1:p]’

where U; = ( I FE; )T and II} is a permutation matrix. In theory, any
rank-revealing QR factorization may suffice, but in practice the SRRQR fac-
torization results in greater numerical stability when working with E; (and
hence Uj); see [8] for details. We then have

V; = U, (T

- ~ 7, /T 7 .
7—}12 ~ UJ (HJ U7 J72>[12T]X[1:’I’L]\i]‘ ’

) [1:r]x [L:p]
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Im
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FiG. 4.2. Top: mear-field points Ig (o), far-field points ;g (s), prozy points (x), and the points
[17 : 32] (m) involved in the approzimation of height-2 HSS block Ty \ng (Lin—lis]] = k(i;-, [17 : 32]) for
a matriz of size n = 32, number of HSS levels L = 2, and number of proxy points p = 16. Bottom:

the resulting index set if (0). (As noted in Figure 4.1 above, these are “cartoon illustrations” and
are not reflective of actual numerical results.)

SO
T
) | . ~ . J)1
(T] )|ij><[1:n7\1j\] H] <Tjj2)
Tr—|., )
T (Hj T; |ij><[1:n]\ij) |[1:|i;\]x[1:n—\1ju
~ J Tr—
(HjTj |E_’7.x[1:n]\ij |[|i;|+1:|§;|+r]x[1:n—\1j\]
= U;T" i x1,mi;»
where i;- C i; is of size ;; 47 and
I 0

Oetlo m ()
J

Now, if j is a leaf, this last display is precisely the HSS generator. If j is not a leaf,
we set Rcl(j) :Uj|( and Rcz(j) :Uj|(

i 0iey (5)) % [1:55]+7] i ey ) X [L[5 [ +0]°
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16 PROXY POINT METHOD ANALYSIS AND APPLICATIONS

A73 4.2. Constructing the remaining HSS generators. Now, note that for each

474 4 at the leaf level in T, each matrix (Tj_)(i’ O ) x L] used to obtain the
c1(3) 7 e2(d) g

175 generator U; yields the same U; regardless of the specific value of j. Hence, i;- is the
476 same for any leaf-level j. Therefore we can show by induction on L that for each j
477 at the same depth of 7, U; and 13 are the same. This shows that we only need to
478 perform the above steps once at each depth of T to obtain all the HSS row generators
179 U; for a leaf-level j and R; for j with depth(j) < L — 2. Furthermore, because the
180 above steps do not depend on the specific function k(z,y) = f(|x — y|) as long as
481  f satisfies the analyticity condition, the above steps also construct the HSS column
182 generators V; and Wj. So, we set V; = Uj for a leaf-level j and W; = R; for j with
483 depth(j) < L — 2. This last fact shows why our assumption that f; = f2 at the
484  beginning of this section confers no loss of generality. Finally, for each j € T, we set
185 Bj = 713 Xi;ib(j)'

486 So far, we have not mentioned how many proxy points are required for the far-field
487 approximation at each level in the above construction method; we will explore this
488 issue in the next section. We note here, however, that if the number of proxy points
189 is O(logn), then the flop count of this method is the same as that of the method in
190 [12], for a total of O(log®n) flops. We will show that this is indeed the case in the
491 next section whenever f satisfies the univalent condition in Proposition 2.3.

192 4.3. Number of proxy points required. First, we fix some notation: let 7,7
493 be the HSS tree and HSS index set of T', respectively, and let j € T have corresponding
491 index set i; € Z. We define ij to be the subset of i; missing its least and greatest |i;|/4
495 elements, ordered the usual way. We also define Tg’p to be the p-point proxy point
496 approximation (in the first variable) to the subblock T\;jx[lm]\ij = k(ij, [1: n]\ ij)
197  with center (1/2) (min(i;) + max(i;)) and radius (1/2) (max(i;) — min(i;) + 1).

198 Next, we show with Example 1 that for general f € O (B(n/2,n/2)), this ap-
199 proximation need not have good convergence properties. This corresponds to the case
500 that f grows rapidly away from n/2; this corresponds to the case that the function

501 bound in Equation (2.9) is large.

502 EXAMPLE 1. Forn > 8, let T;, € Ryx,, have entries (Ty,); ; = cos ((7/4) |j — i),
503 and let I, = {in1,1n,2,1n,3} be its one-level HSS index set, indexed the usual way.
504 Then the associated function f(z) = f1(z) = f2(z) = cos ((7z)/4) is holomorphic on
505 B(n/2,n/2). Table .1 shows the minimum number of points p required for TP to
506 approzimate (Ty,) foix[Lin]\ing 10 O given tolerance. Note that even for such small
5
5
5

507  matriz sizes and large tolerance, the number of proxy points required already scales
508 linearly with n. It is also worth noting that the rank of T, is at most 8 for all n and
509 every off-diagonal block.

TABLE 4.1
The size n of the matrixz T, and the minimum number of proxy points p required to attain

7l,p —6
| @), i, —Ta|), < 107

n 16 |24 |32 |40 |48 |56 |64 |72 |80
P 21 | 27 |34 |39 |47 |53 |59 |65 | 72

510 The poor performance in Example 1 makes sense in light of Proposition 2.1: for each
511 y €Y =[1:n]\ip1 = [n/2+1:n], k(z,9) = f(]z —y|) must not be too large in
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absolute value for all z € OF = 0B (n/4+1/2,v/8n/8) in order for a small number
of proxy points to be sufficient. But in this case, we may observe that, if y = n/2+1,
the maximum of f (Jy — z|) = cos ((w/4)|y — #|) along z € OF grows exponentially
in n. In particular, even though cosine is bounded on the real line, its growth along
the one-dimensional line z(t) = ¢ + it (for real t) is exponential. Hence, the growth
of p with respect to n shown in Table 4.1 gives evidence that f with large values on
B (n/2,n/2) may require a lot of proxy points for an accurate approximation.

On the other hand, if f is bounded on the real line and univalent on B (n/2,n/2),
we show in Example 2 that we do seem to have good proxy point convergence for the
HSS approximation outlined in Sections 4.1 and 4.2.

EXAMPLE 2. Forn > 8, let T\, € Ry, have entries (Ty,); ; = cos ((m[j —i[)/n).
Then the associated function f(z) = f1(z) = fa(z) = cos((7z)/n) is univalent on
B (n/2,n/2) and bounded on the real line. Table 4.2 shows the minimum number
of proxy points required for the sublinear HSS construction method to yield a given

approximation tolerance for the topmost HSS row block.

TABLE 4.2
The size n of the matriz Ty, and the minimum value of p such that the L-level HSS approrima-
tion constructed in Sections 4.1 and 4.2 with p proxy points approximates the topmost HSS block of
T, to a relative Frobenius norm error 10~19.

2048 | 4096 | 4096 | 8192 | 8192 | 8192 | 16384 | 16384 | 16384 | 16384
1 1 2 1 2 3 1 2 3 4
p | 26 27 27 28 28 28 28 28 28 28

=~ S

Example 2 gives numerical evidence that the proxy-point approximation has good
enough convergence properties to be used in practice, even despite global HSS error
accumulation. We now show that good proxy point convergence is true for general
univalent f in this context, as well as in the general case of Proposition 2.2.

LEMMA 4.1. Let T be an HSS index set for an n X n matrix, where n is a power
of 2; let i € Z; and let | be the height of i. Define k(z,y) = f(ly — z[) for some
feOB(n/2,n/2); letx ci;lety e [1:n]\1i; and let p € N. Then

(4.1) k(z,y) — Z ((\7@;21—1> Wk (z5,9) - 14Xz c0F (If (y —2)|)

Zj— T or/4 — 1 ’

Jj=1

where z; = ¢ + (\4/§) 21_1wj, F' is the open ball with center ¢ and radius ({7@) 2l_1,
and ¢ = (1/2) (max(i) — min(i) 4+ 1).

Proof. This is a straightforward application of Proposition 2.1, where we set

X = LY =[1:n]\i and D and E to be the open balls with center ¢ and
radii R = 2!"! and r = 2, respectively. We thus get a = 2v/2/(v/2 — 1) < 14. 0

Therefore, by the maximum modulus principle and Lemma 4.1, if we find that
max,coB((n+1)/2,n/2—1) |f(2)| has a sufficiently small bound with respect to n, we
would need only O (logn) + |log €| proxy points to obtain an entrywise proxy point
approximation with tolerance e at every height of the HSS tree. But note that we
obtained exactly such a bound in Section 2 in Proposition 2.3 if f is univalent on
B(n/2,n/2), and if f and its derivative does not grow too quickly quickly with respect
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to n along the real axis. Hence, we obtain the following absolute error bound for the
proxy point approximation of an off-diagonal “far-field” row block:

COROLLARY 4.2. Let T € C be the n x n matriz with entries T; ; = f (|7 —1|),
where f € O (B (n/2,n/2)) is injective on B (n/2,n/2). Let T be the HSS index set of
T, and leti; € I. Then

— TP

7n?
|7h, s < (m) (m*/8) 1 (n/2)] + If (n/2)]).
Proof. By Lemma 4.1, the maximum modulus principle, and Proposition 2.2, in
that order, we have that for each 1 <u < |i;| and 1 < v < |[1:n]\ ij],
’(Thjxum]\ij) B (Tj,p) maxye(1.a)\i, zeoF (|f (¥ — 2)|)

<14 op/d — 1

Max;esB((n+1)/2,n/2—1) ([f (2)])
op/4 — 1

<14

< % ((n3/8) " (n/2)| + |f (n/2)]) -

Since [i;], |[1,7] \ ij] < 5, the result follows by summing over all u and v. d

Thus, to obtain a given proxy point approximation tolerance e for any level, we need
O (logn) +O(|f (n/2)]) + O (|f' (n/2)]) + O (|log€|) proxy points. In practice, f and
its derivative are often bounded on the real line, as in Examples 3 and 4 below.

5. Discussion and numerical tests. First, we note that, although injectiv-
ity of f as defined in the previous section is a sufficient condition, it is not strictly
necessary in practice to enable the use of our sublinear Toeplitz HSS construction
algorithm. The point of the injectivity criterion is simply to allow, using Proposi-
tion 2.2, a sufficiently slow growth bound for f that depends only on its radius of
analyticity. However, functions f that are not univalent on the relevant region can
also grow sufficiently slowly in order for their related construction algorithm outlined
in the previous section to work on the related Toeplitz matrix. Example 3 illustrates
this.

EXAMPLE 3. Forn > 8, let T, € Ryx, have entries (15,), ; = (|7 —i[ — n/2)?,

so the associated function f(z) = fi1(2) = fo(2) = (z —n/2)? is not univalent on
B(n/2,n/2). Table 5.1 lists the relative approximation tolerance for various HSS
approximations of T from Sections /.1 and 4.2. (For the scheme as outlined there,
we set the mazimum off-diagonal rank to r = 28. This is sufficient, since each matriz
involved has a relative off-diagonal numerical rank of 3 with respect to the tolerance
10~1.) Note that relatively small values of p result in a good approzimation.

On the other hand, the conditions of Proposition 4.2 provides a wide class of
functions for which our sublinear HSS construction algorithm is guaranteed to work.

EXAMPLE 4. Since fi1(z) =n/z and f2(z) = —n/z are univalent on B (n/2,n/2),
the method from Sections 4.1 and /.2 should work to find the HSS generators of T,,, the
Cauchy kernel matriz evaluated at n equidistant points in [—1,1], in sublinear time.
Table 5.2 lists the relative approximation tolerance for various HSS approximations to
the matriz T,, € R, x, with off-diagonal values (Tn)i,j =n/(j—1i) and diagonal values
equal to 0. The mazimum relative off-diagonal numerical rank r is also listed; for this
experiment, we set v = 28 for each matriz. It is worth noting that the accuracy bound
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TABLE 5.1
The relative Frobenius norm errors of the L-level HSS approximation to Ty, from Sections 4.1
and 4.2 using p proxy points. The top and bottom tables show the errors using 32 and 48 proxy
points at each level, respectively.

n 2048 2048 8192 8192 16384 | 16384
L 2 4 4 6 6 7
rel. err. (e10~1%) 5.4863 | 2.9697 | 7.7119 | 3.3541 | 6.9370 | 3.4362
n 2048 2048 8192 8192 16384 | 16384
L 2 4 4 6 6 7
rel. err. (e10~13) 2.0441 | 9.3656 | 3.2532 | 1.0675 | 2.9239 | 1.0933

586 given in [28] may also be used in lieu of Proposition 2.1 for this particular kernel
587 matriz to indicate applicability of the scheme from Section 4.

TABLE 5.2
The relative Frobenius norm errors of the L-level HSS approximation to T, from Sections 4.1
and /.2 using p prozy points, as well as the numerical HSS rank v of Ty, with tolerance 10~14. Again,
the top and bottom tables show the errors using 32 and 48 proxy points at each level, respectively.

n 2048 | 2048 | 8192 | 8192 | 16384 | 16384
r 26 26 30 30 33 33
L 2 4 4 6 6 7
rel. err. (e10- %) || 7.1041 | 5.9208 | 8.1024 | 6.1210 | 9.4705 | 6.1585
n 2048 | 2048 | 8192 | 8192 | 16384 | 16384
r 26 26 30 30 33 33
L 2 4 4 6 6 7
rel. err. (e10- %) || 1.7926 | 1.1841 | 2.1102 | 1.2407 | 2.5062 | 1.2521

588 Again, we note that even after global error accumulation associated with an HSS
589 tree of depth 6 and 7 in Examples 4 and 3, the relative error is still quite low. This
590 gives evidence that the asymptotic error decay regime from Proposition 2.2 holds well

591 enough in practice: note that the maximum of the function in Example 3 is even
592 increasing on B(n/2,n/2) as n grows. This increase, however, is polynomial in n, and
593 therefore so is the numerator of the bound given by Corollary 4.2. The denominator
594  of this bound is exponential in p, which helps explain the quality of the approximation
595 in Example 3.

596 6. Extensions. In forthcoming studies, we can use the arguments of Section 4.3
597 to bound the numerical rank of certain classes of matrices. In particular, we could use
598 control over the error in Proposition 2.1 to produce bounds similar to Corollary 4.2
599 and argue when a general one-dimensional kernel matrix may have low numerical rank.
600 Furthermore, we may perform a more detailed analysis of the global error accumulated
)1 after all compression steps in Sections 4.1 and 4.2 are performed, including the SRRQR
)2 factorization steps. This gives additional motivation for proving an absolute bound in
)3 Proposition 2.1, Proposition 2.3, and Corollary 4.2, since relative bounds are harder
)4 to integrate into a global HSS error analysis.
505 Finally, we may also extend the bound of Proposition 2.1 to analytic functions
06 of more than one (complex) variable. In particular, no part of the argument used
)7 in this proposition relies on complex analysis concepts that apply only in the one-
08 variable case. Hence, we may explore generalizations of the complex-analytic low-rank
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approximations discussed here to more general Toeplitz matrices, as well as to non-
Toeplitz matrices that are defined by analytic functions in other ways. When doing
S0, we may also combine the results of Section 4.3 with the hierarchical partitioning
described in [24]. As mentioned above, this may again enable us to obtain off-diagonal
rank bounds for classes of kernel matrices by certain multivariable analytic functions
satisfying adequate growth bounds.
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